Eliminación de flúor del agua utilizando residuos de procesos de las industrias de cemento, agregados y cerámica roja

Contenido principal del artículo

Silvio Cesar Dal Pont
Luana Milak Furmanski
José Luiz Westrup
Camila Gaspodini Tachinski
Thuani Gesser Muller
Alexandre Zaccaron
Alexandre Gonçalves Dal-Bó
Michael Peterson

Resumen

La demanda creciente de agua potable, junto con la contaminación de las fuentes de agua superficial, ha intensificado el interés en aprovechar el agua subterránea para el suministro de agua. Los niveles elevados de flúor en el agua subterránea, que superan los límites recomendados (1.5 mgL-1), representan un desafío significativo, prohibiendo el suministro de agua al público. Existen varias técnicas para la eliminación de flúor, destacándose la adsorción por su versatilidad, simplicidad, rentabilidad y eficiencia. Este estudio evaluó la cinética y la capacidad de adsorción de residuos de las industrias cerámica y del cemento, específicamente residuos de proceso (RP) de tejas, ladrillos y concreto celular. Estos materiales, derivados de los desechos de la industria de la construcción, fueron elegidos por su accesibilidad y bajo costo de preparación. La caracterización mediante difractometría de rayos X, espectroscopía de fluorescencia de rayos X y adsorción de nitrógeno isoterma reveló que el RP de concreto celular es el adsorbente más prometedor debido a su mayor área superficial específica (28.2 m2 g-1) en comparación con el RP de ladrillo (12.6 m2 g-1) y el RP de teja (2.366 m2 g-1). La capacidad de adsorción siguió el orden: RP de concreto celular > RP de ladrillo > RP de teja.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Dal Pont , S. C., Milak Furmanski, L., Westrup, J. L., Gaspodini Tachinski, C., Gesser Muller, T., Zaccaron, A., Gonçalves Dal-Bó, A. ., & Peterson, M. (2024). Eliminación de flúor del agua utilizando residuos de procesos de las industrias de cemento, agregados y cerámica roja. Revista De Ciencia Y Tecnología, 42(1), 39–47. https://doi.org/10.36995/j.recyt.2024.42.004
Sección
Ingeniería, Tecnología e Informática
Recibido 2024-05-27
Aceptado 2024-08-30
Publicado 2024-12-10

Citas

Amini, M.; Mueller, K.; Abbaspour, K.C.; Rosenberg, T.; Afyuni, M.; Møller, K.N.; Sarr, M.; Johnson, C.A. Statistical Modeling of Global Geogenic Fluoride Contamination in Groundwaters. Environ. Sci. Technol. 2008, 42, 3662–3668, doi:10.1021/es071958y.

Azizian, S. Kinetic Models of Sorption: A Theoretical Analysis. J. Colloid Interface Sci. 2004, 276, 47–52, doi:10.1016/j.jcis.2004.03.048.

Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride Removal from Water by Adsorption—A Review. Chem. Eng. J. 2011, 171, 811–840, doi:10.1016/j.cej.2011.05.028.

Borgohain, X.; Boruah, A.; Sarma, G.K.; Rashid, M.H. Rapid and Extremely High Adsorption Performance of Porous MgO Nanostructures for Fluoride Removal from Water. J. Mol. Liq. 2020, 305, 112799, doi:10.1016/j.molliq.2020.112799.

BRASIL Portaria N° 518, de 25 de Março de 2004. Legislaçã Para Águas de Consumo Humano; Brasilia, DF, 2004;

Brazil Portaria de Consolidação No. 5. Consolidação Das Normas Sobre as Ações e Os Serviços de Saúde Do Sistema Único de Saúde.

Dhar, V.; Bhatnagar, M. Physiology and Toxicity of Fluoride. Indian J. Dent. Res. 2009, 20, 350, doi:10.4103/0970-9290.57379.

Freundlich, H. Über Die Adsorption in Lösungen. Zeitschrift für Phys. Chemie 1907, 57U, doi:10.1515/zpch-1907-5723.

Fujiwara, I.; Suzuki, K.; Shin, S.; Sato, M. Adsorption Properties of High-Silica Zeolites for High-Temperature Chemical Heat Pumps. J. Chem. Eng. Japan 1990, 23, 738–744, doi:10.1252/jcej.23.738.

Gao, S.; Cui, J.; Wei, Z. Study on the Fluoride Adsorption of Various Apatite Materials in Aqueous Solution. J. Fluor. Chem. 2009, 130, 1035–1041, doi:10.1016/j.jfluchem.2009.09.004.

Guan, C.; Lv, X.; Han, Z.; Chen, C.; Xu, Z.; Liu, Q. The Adsorption Enhancement of Graphene for Fluorine and Chlorine from Water. Appl. Surf. Sci. 2020, 516, 146157, doi:10.1016/j.apsusc.2020.146157.

Guo, X.; Wang, J. A General Kinetic Model for Adsorption: Theoretical Analysis and Modeling. J. Mol. Liq. 2019, 288, 111100, doi:10.1016/j.molliq.2019.111100.

He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced Fluoride Removal from Water by Rare Earth (La and Ce) Modified Alumina: Adsorption Isotherms, Kinetics, Thermodynamics and Mechanism. Sci. Total Environ. 2019, 688, 184–198, doi:10.1016/j.scitotenv.2019.06.175.

Ho, Y.S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124, doi:10.1016/S0923-0467(98)00076-1.

Ismail, Z.Z.; AbdelKareem, H.N. Sustainable Approach for Recycling Waste Lamb and Chicken Bones for Fluoride Removal from Water Followed by Reusing Fluoride-Bearing Waste in Concrete. Waste Manag. 2015, 45, 66–75, doi:10.1016/j.wasman.2015.06.039.

Kumara, N.T.R.N.; Hamdan, N.; Petra, M.I.; Tennakoon, K.U.; Ekanayake, P. Equilibrium Isotherm Studies of Adsorption of Pigments Extracted from Kuduk-Kuduk ( Melastoma Malabathricum L.) Pulp onto TiO 2 Nanoparticles. J. Chem. 2014, 2014, 1–6, doi:10.1155/2014/468975.

Lacson, C.F.Z.; Lu, M.-C.; Huang, Y.-H. Fluoride-Rich Wastewater Treatment by Ballast-Assisted Precipitation with the Selection of Precipitants and Discarded or Recovered Materials as Ballast. J. Environ. Chem. Eng. 2021, 9, 105713, doi:10.1016/j.jece.2021.105713.

Lee, G.; Chen, C.; Yang, S.-T.; Ahn, W.-S. Enhanced Adsorptive Removal of Fluoride Using Mesoporous Alumina. Microporous Mesoporous Mater. 2010, 127, 152–156, doi:10.1016/j.micromeso.2009.07.007.

Lee, J.-I.; Kang, J.-K.; Hong, S.-H.; Lee, C.-G.; Jeong, S.; Park, S.-J. Thermally Treated Mytilus Coruscus Shells for Fluoride Removal and Their Adsorption Mechanism. Chemosphere 2021, 263, 128328, doi:10.1016/j.chemosphere.2020.128328.

Lima, É.C., Adebayo, M.A., Machado, F.M.. Kinetic and Equilibrium Models of Adsorption. Carbon Nanostructures 2015, 33–69.

Liu, H.; Dong, Y.; Wang, H.; Liu, Y. Adsorption Behavior of Ammonium by a Bioadsorbent – Boston Ivy Leaf Powder. J. Environ. Sci. 2010, 22, 1513–1518, doi:10.1016/S1001-0742(09)60282-5.

Malik, P.K. Use of Activated Carbons Prepared from Sawdust and Rice-Husk for Adsorption of Acid Dyes: A Case Study of Acid Yellow 36. Dye. Pigment. 2003, 56, 239–249, doi:10.1016/S0143-7208(02)00159-6.

Masquetti da Conceição, V.; Bassetti, F.D.J.; Bergamasco, R. Desfluoretação de Águas Subterrâneas a Partir Da Coagulação/Floculação Com Coagulante Natural de Semente de Moringa Oleifera Lam. e-xacta 2013, 6, 121, doi:10.18674/exacta.v6i2.1005.

Oguz, E. Equilibrium Isotherms and Kinetics Studies for the Sorption of Fluoride on Light Weight Concrete Materials. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 295, 258–263, doi:10.1016/j.colsurfa.2006.09.009.

Olejarczyk, M.; Rykowska, I.; Urbaniak, W. Management of Solid Waste Containing Fluoride—A Review. Materials (Basel). 2022, 15, 3461, doi:10.3390/ma15103461.

Onyango, M.S., Matsuda, H. Chapter 1. Fluoride Removal from Water Using Adsorption Technique. In Advances in Fluorine Science; 2006; pp. 1–48.

Organization, W.H. Guidelines for Drinking-Water Quality Recommendation. World Health Organization. Geneva, Switz. 2004.

Prola, L.D.T.; Acayanka, E.; Lima, E.C.; Umpierres, C.S.; Vaghetti, J.C.P.; Santos, W.O.; Laminsi, S.; Djifon, P.T. Comparison of Jatropha Curcas Shells in Natural Form and Treated by Non-Thermal Plasma as Biosorbents for Removal of Reactive Red 120 Textile Dye from Aqueous Solution. Ind. Crops Prod. 2013, 46, 328–340, doi:10.1016/j.indcrop.2013.02.018.

Ribas, M.C.; Adebayo, M.A.; Prola, L.D.T.; Lima, E.C.; Cataluña, R.; Feris, L.A.; Puchana-Rosero, M.J.; Machado, F.M.; Pavan, F.A.; Calvete, T. Comparison of a Homemade Cocoa Shell Activated Carbon with Commercial Activated Carbon for the Removal of Reactive Violet 5 Dye from Aqueous Solutions. Chem. Eng. J. 2014, 248, 315–326, doi:10.1016/j.cej.2014.03.054.

Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S. American Public Health Association, American Water Works Association, Water Environment Federation: Standard Methods for Examination of Water and Wastewater (22nd Edition). Am. Public Heal. Assoc. 2012.

Rovani, S.; Censi, M.T.; Pedrotti, S.L.; Lima, É.C.; Cataluña, R.; Fernandes, A.N. Development of a New Adsorbent from Agro-Industrial Waste and Its Potential Use in Endocrine Disruptor Compound Removal. J. Hazard. Mater. 2014, 271, 311–320, doi:10.1016/j.jhazmat.2014.02.004.

Shawabkeh, R. Experimental Study and Modeling of Basic Dye Sorption by Diatomaceous Clay. Appl. Clay Sci. 2003, 24, 111–120, doi:10.1016/S0169-1317(03)00154-6.

Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495, doi:10.1063/1.1746922.

Westrup, J.L.; Bertoldi, C.; Cercena, R.; Dal-Bó, A.G.; Soares, R.M.D.; Fernandes, A.N. Adsorption of Endocrine Disrupting Compounds from Aqueous Solution in Poly(Butyleneadipate-Co-Terephthalate) Electrospun Microfibers. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 611, 125800, doi:10.1016/j.colsurfa.2020.125800.

Yadav, A.; Kaushik, C.; Haritash, A.; Kansal, A.; Rani, N. Defluoridation of Groundwater Using Brick Powder as an Adsorbent. J. Hazard. Mater. 2006, 128, 289–293, doi:10.1016/j.jhazmat.2005.08.006.

Yang, K.; Li, Y.; Tian, Z.; Peng, K.; Lai, Y. Removal of Fluoride Ions from ZnSO4 Electrolyte by Amorphous Porous Al2O3 Microfiber Clusters: Adsorption Performance and Mechanism. Hydrometallurgy 2020, 197, 105455, doi:10.1016/j.hydromet.2020.105455.

Zueva, S.; Ferella, F.; Corradini, V.; Baturina, E. V.; Ippolito, N.M.; Vegliò, F. An Effective New Treatment of Fluoride-Containing Sludge Resulting from the Manufacture of Photovoltaic Cells. Processes 2021, 9, 1745, doi:10.3390/pr9101745.

Contador de visualizaciones: Resumen : 46 vistas.