Panes con harina de Ora-pro-nobis y Bacillus clausii: Caracterización y resistencia al tracto gastrointestinal in vitro
Contenido principal del artículo
Resumen
En este estudio se desarrollaron panes que contienen harina de ora-pro-nobis y esporas del probiótico Bacillus clausii. Se evaluaron las características fisicoquímicas, microbiológicas de los panes y la resistencia in vitro del probiótico al tracto gastrointestinal (TGI) durante 4 días de almacenamiento de los panes a 27 °C. La acidez, extracto seco total, humedad y cenizas de los panes de los diferentes tratamientos no difirieron y lo mismo ocurrió para proteínas, grasas, carbohidratos y color. Hubo un aumento en la viabilidad de B. clausii durante el tiempo de almacenamiento, lo que sugiere que las esporas resistieron la cocción, germinaron y se multiplicaron en el producto. Al final de la vida útil, la viabilidad en fase entérica II fue de 5,84 Log UFC/g de B. clausii. Considerando el consumo diario de 40 g de pan, aproximadamente 7,44 Log UFC de B. clausii serían viables al final del TGI. Así, el pan desarrollado puede ser un portador potencial de este probiótico y una opción más saludable para la industria panadera.
Descargas
Detalles del artículo
La Revista de Ciencia y Tecnología sostiene su compromiso con las políticas de Acceso Abierto a la información científica, al considerar que tanto las publicaciones científicas como las investigaciones financiadas con fondos públicos deben circular en Internet en forma libre y gratuita. Los trabajos publicados en la Revista de Ciencia y Tecnología están bajo la licencia Creative Commons Atribución-NoComercial 2.5 Argentina.
Aceptado 2024-08-28
Publicado 2024-12-10
Citas
Andrews, W.H.; Flowers, R.S.; Silliker, J.; Bailey, J.S. Salmonella. In F. P. Downes and K. Ito (Eds.), Compendium of methods for the microbilological examination of foods. p.357-380. Washington: American Public Health Association – APHA, 2001. Available in: http://dx.doi.org/10.2105/9780875531755ch37
AOAC. 1995. Official Methods of Analysis of the Association of Analytical Chemists. 17th ed. Method 920.39. Washington, DC, USA.
AOAC. 2000. Official Methods of Analysis of the Association of Analytical Chemists. Gaithersburg, USA: AOAC International.
APHA. American Public Health Association. Committee on Microbiological Methods for foods. Compendium of methods for the microbiological examination of foods. Washington, USA, 2001.
Arepally, D.; Reddy, R.S.; Goswami, T.K.; Coorey, R. A review on probiotic microencapsulation and recent advances of their application in bakery products. Food and Bioprocess Technology. v.15, p.1677–1699, 2022. Available in: https://doi.org/10.1007/s11947-022-02796-2
Bedani, R.; Rossi, E.A.; Saad, S.M.I. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology. v.34, n. 2, p. 382-389, 2013. Available in: https://doi.org/10.1016/j.fm.2013.01.012
Bennett, R.W.; Belay, N. Bacillus cereus. In F. P. Downes, & K. Ito (Eds). Compendium of Methods for the Microbiological Examination of Foods. Washington, DC, USA: American Public Health Association. 311-316, 2001.
Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development of a non-dairy probiotic fermented product based on almond milk and inulin. Food Science and Technology International. v. 21, n. 6, 2015. Available in: https://doi.org/10.1177/1082013214543705
Brazil. Normative Instruction nº 60, establishes the lists of microbiological standards for foods. Brasília, DF, Brazil: Ministry of Health, National Health Surveillance Agency. (in Portuguese), 2019. Available from: https://www.in.gov.br/web/dou/-/instrucao-normativa-n-60-de-23-de-dezembro-de-2019-235332356
Chen, K.; Roca, M. In vitro bioavailability of chlorophyll pigments from edible seaweeds. Journal of Functional Foods. v. 41, p. 25-33, 2018. Available in: https://doi.org/10.1016/j.jff.2017.12.029.
Claus, D.; Berkeley, R.C.W. Genus Bacillus Chon 1872. In Sneath, P.H.A.; Mair, N.S.; Sharpe, M.E.; Holt, J.G. (Eds). Bergey's manual of systematic bacteriology. Baltimore, Md: The Williams & Wilkins Co. p. 1105–1139, 1986.
Fares, C.; Menga, V.; Martina, A.; Pellegrini, N.; Scazzina, F.; Torriani, S. Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with b-glucan and Bacillus coagulans GBI-30, 6086. Journal of Cereal Science. v. 65, p.260-266, 2015. Available in: https://doi.org/10.1016/j.jcs.2015.07.017
Farias, D.P.; de Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technolog. v. 93, p.23–35, 2019. Available in: https://doi.org/10.1016/j.tifs.2019.09.004
Ferreira E, Cavalcanti PP, Nogueira DA. ExpDes: An R Package for ANOVA and Experimental Designs. Applied Mathematics. v. 5, p. 2952-2958, 2014.
Foligné, B.; Daniel, C.; Pot, B. Probiotics from research to market: The possibilities, risks and challenges. Current Opinion in Microbiology. v.16, n.3, p. 284–292, 2013. Available in: https://doi.org/10.1016/j.mib.2013.06.008
Granato, D.; Barba, F.J.; Kovacevic, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annual review of food science and technology. v. 11, p. 93–118, 2020. Available in: https://doi.org/10.1146/annurev-food-032519-051708.
Guo, Z.; Wang, J.; Yan, L.; Chen, W.; Liu, Xiao-ming,; Zhang, He-ping. In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with selected probiotic strains. LWT - Food Science and Technology. v. 42, p.1640–1646, 2009. Available in: https://doi.org/10.1016/j.lwt.2009.05.025
Jafari, M.; Mortazavian, A.M.; Hosseini, H.; Safaei, F.; Khaneghah, A.M.; SantAna, AS. Probiotic Bacillus: Fate during sausage processing and storage and influence of different culturing conditions on recovery of their spores. Food Research International. v. 95, p. 46–51, 2017. Available in: https://doi.org/10.1016/j.foodres.2017.03.001
James, O.; Rotimi, A.A.; Bamaiyi B.O.J. Phytoconstituents, proximate and nutrient investigations of Saba Florida (Benth.) from Ibaji Forest. International Journal of Nutrition and Metabolism, v. 2, n. 5, p. 88-92, 2010. Available from: http://www.academicjournals.org/ijnam
Martin, A.A.; Freitas, R. A.; Sassaki, G.L.; Evangelista, P.H.L.; Sierakowski, M.R. Chemical structure and physical-chemical properties of mucilage from the leaves of Pereskia aculeata. Food Hydrocolloids. v. 70, p. 20-28, 2017. Available in: https://doi.org/10.1016/j.foodhyd.2017.03.020
Martins, E.M.F.; Benevenuto, W.C.A.N.; Martins, A.D.O.; Benevenuto, Júnior. A.A.; Queiroz, I.C.; Dias, T.M.C.; Souza, D.A.F.; Paula, D.A.; Martins, M.L. New and trends in the development of functional foods: Probiotic dairy and non-dairy products. In Gopi S, Balakrishnan P (Eds), Advances in Nutraceuticals and Functional Foods. New York: Apple Academic Press. Cap 8, p.199-237, 2022.
Martins, E.M.F.; Ramos, A.M.; Vanzela, E.S.L.; Stringheta, P.C.; Pinto, C.L.O.; Martins, J.M. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International. v. 51, p. 764–770, 2013. Available in: https://doi.org/10.1016/j.foodres.2013.01.047
R CORE TEAM. R: R Foundation for Statistical Computing. Vienna, Austria, 2021. Available from: https://www.r-project.org/index.html
Ranawana, V.; Raikos, V.; Campbell, F.; Bestwick, C.; Nicol, P.; Milne, L.; Duthie, G. Breads fortified with freeze-dried vegetables: quality and nutritional attributes. Part I. Breads containing oil as an ingredient. Foods. v. 5, p. 19, 2016. Available in: https://doi.org/10.3390/foods5010019
Sayed-Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of Nutritional and Technological Attributes of Whole Wheat Based Bread Fortified with Chia Flour. Foods. v. 7, p. 135, 2018. Available in: https://doi.org/10.3390/foods7090135
Seyedain-Ardabil, M.; Sharifan, A.; Tarzi, B.G. The production of synbiotic bread by microencapsulation. Food Technol Biotechnol. v. 54, n.1, p. 52-59, 2016. Available in: https://doi.org/10.17113/ftb.54.01.16.4234
Silva, A.F.R.; Monteiro, M.; Nunes, R.; Baião, A.; Braga, S.S; Sarmento, B.; Coimbra, M.A; Silva, A.M.S.; Cardoso, S.M. Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. Food Bioscience. v. 49, p.101887, 2022. Available in: https://doi.org/10.1016/j.fbio.2022.101887
Silva, N.; Junqueira, V.C.A.; Silveira, N.F.A..; Taniwaki, M.H.; Santos, R.F.S.; Gomes, R.A.R. Manual of methods of microbiological analysis of food and water. São Paulo, Brazil: Bluncher, 2017. ISBN: 978-85-212-1225-6
TACO. Brazilian Food Composition Table. NEPA – UNICAMP editor, 2011 (in Portuguese). Available from: https://www.nepa.unicamp.br/taco/contar/taco_4_edicao_ampliada_e_revisada.pdf?arquivo=1
Terpou, A.; Papadaki, A.; Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. v. 11, n. 7, p.1591, 2019. Available in: https://doi.org/10.3390/nu11071591.
Williams, G.M.; Tapsell, L.C.; Beck, L.J. Gut health, the microbiome and dietary choices: An exploration of consumer perspectives. Nutrition & Dietetics. v.80, n. 1, p.85–94, 2023. Available in: https://doi.org/10.1111/1747-0080.12769.
Zhang, L.; Chen, X.D.; Boom, R.M.; Schutyser, M.A.I. Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking. Food Science and Technology. 93:396-404, 2018. Available in: https://doi.org/10.1016/j.lwt.2018.03.067