Caracterización de carbón activado producido a partir de residuos industriales de yerba mate (Ilex paraguariensis) por activación química con ZnCl2

Contenido principal del artículo

Sergio Surkan
Claudia Marcela Mendez
Marcos Gabriel Maiocchi

Resumen

En este estudio, se prepararon carbones activados (AC) mediante activación química con ZnCl2 de ramas de yerba mate (YM) en una proporción 1:1 masa de carbón vs masa de agente activador, realizándose la pirólisis a 550, 650 y 750 °C en una corriente de nitrógeno durante 60 y 120 minutos. Las muestras de AC se caracterizaron mediante diversas técnicas, como la isoterma de Brunauer-Emmett-Teller (BET), espectroscopía infrarroja por transformada de Fourier (FTIR), microscopía electrónica de barrido (SEM) y difracción de rayos X (XRD) para confirmar sus propiedades características. El área de superficie específica y el volumen de poros de los AC resultantes disminuyeron al aumentar la temperatura. Las muestras obtenidas a 650 °C mostraron superficies específicas BET máxima de 940 m2 g-1.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Surkan, S., Mendez, C. M., & Maiocchi, M. G. (2024). Caracterización de carbón activado producido a partir de residuos industriales de yerba mate (Ilex paraguariensis) por activación química con ZnCl2. Revista De Ciencia Y Tecnología, 42(1), 65–71. https://doi.org/10.36995/j.recyt.2024.42.007
Sección
Ingeniería, Tecnología e Informática
Recibido 2023-11-30
Aceptado 2024-11-05
Publicado 2024-12-10

Citas

Benmahdi, F., Oulmi, K., Khettaf, S., Kolli, M., Merdrignac-Conanec, O., & Mandin, P.; Synthesis and characterization of microporous granular activated carbon from Silver berry seeds using ZnCl2 activation, Fullerenes, Nanotubes and Carbon Nanostructures, 29(9); 657-669, 2021.

Dubey, P., Shrivastav, V., Maheshwari, P. H., & Sundriyal, S.; Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities, Carbon, 170; 1-29, 2020.

Dubey, P., Shrivastav, V., Maheshwari, P. H., & Sundriyal, S.; Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities, Carbon, 170; 1-29, 2020.

Esteves, I. A., Lopes, M. S., Nunes, P. M., & Mota, J. P.; Adsorption of natural gas and biogas components on activated carbon, Separation and Purification Technology, 62(2); 281-296, 2008.

Foo, K. Y., & Hameed, B. H.; Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating, Bioresource Technology, 111; 425-432, 2012.

Gomez-Delgado, E., Nunell, G., Cukierman, A. L., & Bonelli, P.; Agroindustrial waste conversion into ultramicroporous activated carbons for greenhouse gases adsorption-based processes, Bioresource Technology Reports, 18; 101008, 2022.

González-García, P.; Activated carbon from lignocellulosic precursors: A review of the synthesis methods, characterization techniques and applications, Renewable and Sustainable Energy Reviews, 82; 1393-1414, 2018.

Han, Q., Wang, J., Goodman, B. A., Xie, J., & Liu, Z.; High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue, Powder Technology, 366; 239-248, 2020.

Heijman, S. G. J., & Hopman, R.; Activated carbon filtration in drinking water production: Model prediction and new concepts, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151(1-2); 303-310, 1999.

https://inym.org.ar/descargar/publicaciones/estadisticas/2023.html

Hussain, O. A., Hathout, A. S., Abdel-Mobdy, Y. E., Rashed, M. M., Rahim, E. A., & Fouzy, A. S. M.; Preparation and characterization of activated carbon from agricultural wastes and their ability to remove chlorpyrifos from water, Toxicology Reports, 10; 146-154, 2023.

Kwiatkowski, J. F.; Activated carbon: classifications, properties and applications, 2012.

Lee, J., Kim, J., & Hyeon, T.; Recent progress in the synthesis of porous carbon materials, Advanced Materials, 18(16); 2073-2094, 2006.

Li, Z., Chang, X., Zou, X., Zhu, X., Nie, R., Hu, Z., & Li, R.; Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions, Analytica Chimica Acta, 632(2); 272-277, 2009.

Linhares, B., Weber, C. T., Foletto, E. L., Paz, D. S., Mazutti, M. A., & Collazzo, G. C.; Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution, Environmental Technology, 34(16); 2401-2406, 2013.

Ma, F., Ding, S., Ren, H., & Liu, Y.; Sakura-based activated carbon preparation and its performance in supercapacitor applications, RSC Advances, 9(5); 2474-2483, 2019.

Mariana, M., HPS, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., & Amayreh, M.; Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, Journal of Water Process Engineering, 43; 102221, 2021.

Monser, L., Amor, M. B., & Ksibi, M.; Purification of wet phosphoric acid using modified activated carbon, Chemical Engineering and Processing: Process Intensification, 38(3); 267-271, 1999.

Musyoka, N. M., Wdowin, M., Rambau, K. M., Franus, W., Panek, R., Madej, J., & Czarna-Juszkiewicz, D.; Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application, Renewable Energy, 155; 1264-1271, 2020.

Postnov, V. N., Rodinkov, O. V., Moskvin, L. N., Novikov, A. G., Bugaichenko, A. S., & Krokhina, O. A.; From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration, Russian Chemical Reviews, 85(2); 115, 2016.

Raut, E. R., Bedmohata, M. A., & Chaudhari, A. R.; Comparative study of preparation and characterization of activated carbon obtained from sugarcane bagasse and rice husk by using H3PO4 and ZnCl2, Materials Today: Proceedings, 66; 1875-1884, 2022.

Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., & Azad, A. K.; Preparation of activated carbon from biomass and its applications in water and gas purification: A review, Arab Journal of Basic and Applied Sciences, 27(1); 208-238, 2020.

Saka, C.; BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from a corn shell by chemical activation with ZnCl2, Journal of Analytical and Applied Pyrolysis, 95; 21-24, 2012.

Shamsuddin, M. S., Yusoff, N. R. N., & Sulaiman, M. A.; Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation, Procedia Chemistry, 19; 558-565, 2016.

Tay, T., Ucar, S., & Karagöz, S.; Preparation and characterization of activated carbon from waste biomass, Journal of Hazardous Materials, 165(1-3); 481-485, 2009.

Tsivadze, A. Y., Gur’yanov, V. V., & Petukhova, G. A.; Preparation of spherical activated carbon from furfural, its properties and prospective applications in medicine and the national economy, Protection of Metals and Physical Chemistry of Surfaces, 47; 612-620, 2011.

Ukanwa, K. S., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S.; A review of chemicals to produce activated carbon from agricultural waste biomass, Sustainability, 11; 6204, 2019.

Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., & Xing, G.; Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4, Applied Surface Science, 320; 674-680, 2014.

Yang, B., Liu, Y., Liang, Q., Chen, M., Ma, L., Li, L., Liu, Q., Tu, W., Lan, D., & Chen, Y.; Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell, Ecotoxicology and Environmental Safety, 170; 722-731, 2019.

Zubrik, A., Matik, M., Hredzák, S., Lovás, M., Danková, Z., Kováčová, M., & Briančin, J.; Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis, Journal of Cleaner Production, 143; 643-653, 2017.

Contador de visualizaciones: Resumen : 31 vistas.