Primer reporte de pseudogenes de enzimas SABATH de la vía metabólica de las xantinas en Ilex paraguariensis
Contenido principal del artículo
Resumen
Ilex paraguariensis St. Hil. es un árbol dioico originario de las selvas subtropicales de América del Sur, cuyas hojas y pequeñas ramas son procesadas para preparar la infusión estimulante y popular conocida como “mate”. A partir de la exploración, desde el punto de vista transcriptómico, genómico y filogenético de la vía biosintética de las xantinas, pudo realizarse la detección de pseudogenes mediante el análisis comparativo con otras plantas de importancia agronómica. Se analizaron los transcriptos de I. paraguariensis utilizando como genoma de referencia el material elite desarrollado por el INTA EAA-Cerro Azul de Misiones y los datos aportados por el transcriptoma secuenciado por Debat et. al en 2014. Se realizó un examen filogenético de las enzimas de una gran familia de genes SABATH que catalizan la metilación de átomos de oxígeno de una amplia diversidad de ácidos carboxílicos. Los genes más recientemente evolucionados de la familia SABATH son los que corresponden a la vía Metiltransferasas de Xantina (XMT) y Cafeína Sintasa (CS). Investigando los diferentes tipos de metiltransferasas que presenta la yerba mate en el proceso metabólico de la conversión a cafeína, se categorizaron varias enzimas SABATH de los cuales tres correspondían a pseudogenes dentro del grupo de las cafeínas sintasa.
Descargas
Detalles del artículo
La Revista de Ciencia y Tecnología sostiene su compromiso con las políticas de Acceso Abierto a la información científica, al considerar que tanto las publicaciones científicas como las investigaciones financiadas con fondos públicos deben circular en Internet en forma libre y gratuita. Los trabajos publicados en la Revista de Ciencia y Tecnología están bajo la licencia Creative Commons Atribución-NoComercial 2.5 Argentina.
Aceptado 2022-12-01
Publicado 2023-12-18
Citas
Ashihara H, Crozier A (1999). Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res 30:117–205.
Ashihara H, Suzuki T (2004). Distribution and biosynthesis of caffeine in plants. Front Biosci 9:1864–1876.
Acevedo R.M., Maiale S.J., Pessino S.C., Bottini R., Ruiz O.A., Sansberro P.A. (2013). A succinate dehydrogenase flavoprotein subunit-like transcript is upregulated in Ilex paraguariensis leaves in response to water deficit and abscisic acid. Plant Physiology and Biochemistry 65: 48-54.
Acevedo, R. M., Avico, E. H., González, S., Salvador, A. R., Rivarola, M., Paniego, N., Nunes-Nesi, A., Ruiz, O. A., & Sansberro, P. A. (2019). Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves. Planta, 250(2), 445–462. https://doi.org/10.1007/s00425-019-03178-3
Aguilera PM, Grabiele M, DebatHJ, BubilloRE, Martí DA. (2015). The 18S–25S ribosomal RNA unit of yerba mate (Ilex paraguariensis A. St.-Hil.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 1-9.
Aguilera, Patricia & Debat, Humberto & Grabiele, Mauro. (2018). Dataset of the first transcriptome assembly of the tree crop “yerba mate” (Ilex paraguariensis) and systematic characterization of protein coding genes. Data in Brief. 17. 10.1016/j.dib.2018.02.015.
Alifano, P., Fani, R., Liò, P., Lazcano, A., Bazzicalupo, M., Carlomagno, M. S., & Bruni, C. B. (1996). Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiological reviews, 60(1), 44–69. https://doi.org/10.1128/mr.60.1.44-69.1996
Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA vol. 6 (2015).
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research vol. 27 573–580 (1999).
Bergottini VM, Filippidou S, Junier T, Johnson S, Chain PS, Otegui MB, Zapata PD, Junier P. Genome Sequence of Kosakoniaradicincitans Strain YD4, a Plant Growth-Promoting Rhizobacterium Isolated from Yerba Mate (Ilex paraguariensis St. Hill) Genome Announcements 2015, 3(2), e00239-15. DOI:10.1128/genomeA.00239-15
Blanco, E. & Abril, J. F. Computational gene annotation in new genome assemblies using GeneID. Methods Mol. Biol. 537, 243–261 (2009).
Bracesco, N., Sanchez, A. G., Contreras, V., Menini, T., &Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: minireview. Journal of ethnopharmacology, 136(3), 378-384
Brilli, M., & Fani, R. (2004). Molecular evolution of hisB genes. Journal of molecular evolution, 58(2), 225–237. https://doi.org/10.1007/s00239-003-2547-x
Brilli, M., & Fani, R. (2004). The origin and evolution of eucaryal HIS7 genes: from metabolon to bifunctional proteins? Gene, 339, 149–160. https://doi.org/10.1016/j.gene.2004.06.033
Canitrot L., Grosso M.J., Méndez A. (2011). Complejo yerbatero. Serie “Producción regional porcomplejos productivos”. Ministerio de Economía y Finanzas Públicas, Argentina. http://www.mecon.gov.ar/peconomica/docs/Complejo_yerbatero.pdf.
Cardozo Junior, E. L. & Morand, C. (2016). Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health – A review. J. Funct. Foods 21, 440–454
Day S, Montagnini F, Eibl B. (2011) Effects of native trees in agroforestry systems on the soils and yerba mate in Misiones, Argentina. In: Montagnini F., Francesconi W. and Rossi E. (eds.). Agroforestry as a tool for landscape restoration: challenges and opportunities for success. Nova Science Publishers, New York. 201pp.
Debat HJ, Grabiele M, Aguilera PM, Bubillo RE, Otegui MB, Ducasse DA, Zapata PD, Marti DA (2014). Exploring the Genes of Yerba Mate (Ilex paraguariensis A. St.-Hil.) by NGS and De Novo Transcriptome Assembly Zhang J-S (ed). PLoS One 9:e109835.
Eibl B, Fernández R, Kozarik JC, Lupi A, Montagnini F, Nozzi D. (2000) Agroforestry systems with Ilex paraguariensis (American holly or yerba maté) and native timber trees on small farms in Misiones, Argentina. Agroforestry Systems, 48:1-8.
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic acids research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995
Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).
Errecaborde N (1973) Abonos en Yerba Mate. Oficina de publicaciones de INTA, Estación experimental agropecuaria Cerro Azul, Misiones. Informe técnico n19.
Fani, R., Liò, P., Chiarelli, I., & Bazzicalupo, M. (1994). The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. Journal of molecular evolution, 38(5), 489–495. https://doi.org/10.1007/BF00178849
Fani, R., Liò, P., & Lazcano, A. (1995). Molecular evolution of the histidine biosynthetic pathway. Journal of molecular evolution, 41(6), 760–774. https://doi.org/10.1007/BF00173156
Fani R. (2004). Gene duplication and gene loading. In: Microbial evolution: gene establishment, survival, and exchange. Washington, DC: ASM.
Fani, R., Brilli, M., Fondi, M., & Lió, P. (2007). The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case. BMC evolutionary biology, 7 Suppl 2(Suppl 2), S4. https://doi.org/10.1186/1471-2148-7-S2-S4
Fani, R., & Fondi, M. (2009). Origin and evolution of metabolic pathways. Physics of Life Reviews, 6(1), 23-52.
Fondi, M., Emiliani, G., & Fani, R. (2009). Origin and evolution of operons and metabolic pathways. Research in microbiology, 160(7), 502-512.
Fay, J. V., Watkins, C. J., Shrestha, R. K., Litwiñiuk, S. L., Talavera Stefani, L. N., Rojas, C. A., Argüelles, C. F., Ferreras, J. A., Caccamo, M., & Miretti, M. M. (2018). Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles. BMC genomics, 19(1), 891. https://doi.org/10.1186/s12864-018-5240-6
Gauer, L., &Cavalli-Molina, S. (2000). Genetic variation in natural populations of maté (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using RAPD markers.Heredity, 84(6), 647-656.
Glick BR (2012) Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica (Cairo) 2012:1-15.
Gortari J. (2007). El Instituto Nacional de la yerba mate (INYM) como dispositivo político de economía social: mediación intrasectorial en la distribución del ingreso, empoderamiento del sector productivo y desarrollo local en la región yerbatera. En: Realidad Económica, 232, IADE
Gottlieb, A. M., Giberti, G. C., &Poggio, L. (2011). Evaluación del germoplasma de Ilex paraguariensis e Ilex dumosa (Aquifoliaceae). Boletín de la Sociedad Argentina de Botánica, 46(1-2), 113-123.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644-652.
Haft, D. H., Loftus, B. J., Richardson, D. L., Yang, F., Eisen, J. A., Paulsen, I. T., & White, O. (2001). TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic acids research, 29(1), 41–43. https://doi.org/10.1093/nar/29.1.41
Heck CI, De Mejia EG (2007) Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:R138–R151. doi:10.1111/j. 1750-3841.2007.00535
Horowitz N. H. (1945). On the Evolution of Biochemical Syntheses. Proceedings of the National Academy of Sciences of the United States of America, 31(6), 153–157. https://doi.org/10.1073/pnas.31.6.153
Huang, R., O’Donnell, A. J., Barboline, J. J. & Barkman, T. J. (2016). Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc. Natl. Acad. Sci. U. S. A. 113, 10613–10618
Huang, Ruiqi, "Evolution of Caffeine Biosynthetic Enzymes and Pathways in Flowering Plants" (2017). Dissertations. 3169. http://scholarworks.wmich.edu/dissertations/3169
Isolabella, S., Cogoi, L., López, P., Anesini, C., Ferraro, G., &Filip, R. (2010). Study of the bioactive compounds variation during yerba mate (Ilex paraguariensis) processing. Food Chemistry, 122(3), 695-699.
Jensen R. A. (1976). Enzyme recruitment in evolution of new function. Annual review of microbiology, 30, 409–425. https://doi.org/10.1146/annurev.mi.30.100176.002205
Kato, M., Mizuno, K., Fujimura, T., Iwama, M., Irie, M., Crozier, A., & Ashihara, H. (1999). Purification and characterization of caffeine synthase from tea leaves. Plant physiology, 120(2), 579–586. https://doi.org/10.1104/pp.120.2.579
Kato M, Mizuno K, Crozier A, Fujimura T, Ashihara H (2000) Caffeine synthase gene from tea leaves. Nature 406(6799):956–957.
Landis, J. B., Soltis, D. E., Li, Z., Marx, H. E., Barker, M. S., Tank, D. C., & Soltis, P. S. (2018). Impact of whole-genome duplication events on diversification rates in angiosperms. American journal of botany, 105(3), 348–363. https://doi.org/10.1002/ajb2.1060
Lewis E. B. (1951). Pseudoallelism and gene evolution. Cold Spring Harbor symposia on quantitative biology, 16, 159–174. https://doi.org/10.1101/sqb.1951.016.01.014
Maddison, W. P. and D.R. Maddison. (2021). Mesquite: a modular system for evolutionary analysis. Version 3.70 http://www.mesquiteproject.org
McCarthy AA, McCarthy JG (2007). The structure of two N-methyltransferases from the caffeine biosynthetic pathway. Plant Physiol 144(2):879–889.
Nawrocki, E. P. & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935
Negrin, A., Long, C., Motley, T. J., & Kennelly, E. J. (2019). LC-MS Metabolomics and Chemotaxonomy of Caffeine-Containing Holly (Ilex) Species and Related Taxa in the Aquifoliaceae. Journal of agricultural and food chemistry, 67(19), 5687–5699. https://doi.org/10.1021/acs.jafc.8b07168
Ohno, S. (2013). Evolution by gene duplication. Springer Science & Business Media.
One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574(7780), 679–685. https://doi.org/10.1038/s41586-019-1693-2
Onetto A, Laczeski M, Bergottini VM, Lopez A, Sosa AD, Wiss F, Villalba LL, Zapata PD, Otegui MB (2015) Characterization of endophytic sporulating bacteria with plant growth promoting properties isolated from ilex paraguariensis (yerba mate). ipmb 2015 11th int plant mol biol
Pagliosa, C. M., Vieira, M. A., Podestá, R., Maraschin, M., Zeni, A. L. B., Amante, E. R., &Amboni, R. D. D. M. C. (2010). Methylxanthines, phenolic composition, and antioxidant activity of bark from residues from mate tree harvesting (Ilex paraguariensis A. St. Hil.). Food Chemistry, 122(1), 173-178.
Rau V. (2009). La yerba mate en Misiones (Argentina). Estructura y significados de una producción localizada. Agroalimentaria28: 49-58.
Sankoff, D. & Zheng, C. (2018). Whole Genome Duplication in Plants: Implications for Evolutionary Analysis. Methods Mol. Biol. 1704, 291–315.
Sosa DA, Munareto N. Manejo nutricional del cultivo de yerba mate. 5to. Congreso Sudamericano de la Yerba mate. Posadas, Misiones, 2011.
Spannagl, M., Nussbaumer, T., Bader, K., Gundlach, H., & Mayer, K. F. (2017). PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data. Methods in molecular biology (Clifton, N.J.), 1533, 33–44. https://doi.org/10.1007/978-1-4939-6658-5_2
Stein, J., Luna, C., Espasandin, F., Sartor, M., Espinoza, F., Ortiz, J. P., & Pessino, S. C. (2014). Construcción de un mapa genético preliminar de yerba mate (Ilex paraguariensis). Revista de Investigaciones de la Facultad de Ciencias Agrarias-UNR, (23), 007-013.
UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic acids research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
Ycas M. (1974). On earlier states of the biochemical system. Journal of theoretical biology, 44(1), 145–160. https://doi.org/10.1016/s0022-5193(74)80035-4
Yin, Y., Katahira, R., & Ashihara, H. (2015). Metabolism of purine alkaloids and xanthine in leaves of maté (Ilex paraguariensis). Natural product communications, 10(5), 707–712.
Zhang, C., Zhang, T., Luebert, F., Xiang, Y., Huang, C. H., Hu, Y., Rees, M., Frohlich, M. W., Qi, J., Weigend, M., & Ma, H. (2020). Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Molecular biology and evolution, 37(11), 3188–3210. https://doi.org/10.1093/molbev/msaa160
Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP. (2003). Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704-1716.