Composición química y propiedades tecnológicas de alga roja, Agarophyton chilensis (ex Gracilaria chilensis)
Contenido principal del artículo
Resumen
Se caracterizó el alga Agarophyton chilensis (ex Gracilaria chilensis) tanto deshidratada como cocida al vapor. Se analizó la composición química, polifenoles totales y propiedades tecnológicas relacionadas con retención de agua, aceite y formación de geles. El contenido de proteínas del alga es alto (13,3 ± 0,32 g/100g) al igual que fibra dietética (21,7 ± 2,4 g/100g). El contenido de polifenoles es 309,9 ± 26,1 y 529,5 ± 30,6 mg AGE/100g en alga deshidratada y cocida respectivamente. El índice de absorción de agua (IIA) es alto, alcanzando 13,5 ± 0,6 g/g, y el índice de solubilidad en agua (ISA) es de 39,7 ± 6,4%, ambos medidos en alga deshidratada. La concentración mínima de gelificación (CMG) es baja, con 4% en alga deshidratada y 2% en alga cocida. Estas propiedades permiten la incorporación del alga en alimentos procesados, como un ingrediente que aporta en viscosidad y permite la formación de geles.
Descargas
Detalles del artículo
La Revista de Ciencia y Tecnología sostiene su compromiso con las políticas de Acceso Abierto a la información científica, al considerar que tanto las publicaciones científicas como las investigaciones financiadas con fondos públicos deben circular en Internet en forma libre y gratuita. Los trabajos publicados en la Revista de Ciencia y Tecnología están bajo la licencia Creative Commons Atribución-NoComercial 2.5 Argentina.
Aceptado 2019-03-01
Publicado 2019-05-28
Citas
Citas
AENOR. Asociación Española de Normalización: Norma UNE 55037-73. Catálogo de Normas UNE, Madrid (Spain). 1991
Agregán, R.; Munekata, P.E.; Domínguez, R.; Carballo, J.; Franco, D.; Lorenzo, J.M. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Research International. 99:986-994. 2017
Aguilera, Y.; Martín-Cabrejas, M.A.; Benítez, V.; Mollá, E. López-Andreu, F.J.; Esteban, R.M. Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis 22:678–683. 2009
AOAC: Official Methods of Analysis of Association of Official Analytical Chemists International. 18th Edn. AOAC. 2005
Astorga-España, M.S.; Rodríguez-Galdón, B.; rodríguez-Rodríguez, E.M., Díaz-Romero, C. Amino acid content in seaweeds from the Magellan Straits (Chile). Journal of Food Composition and Analysis 53:77-84. 2016
Benitez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andreu, F.J.; Esteban, R.M. Effect of sterilization on dietary fibre and physicochemical properties of onion by-products. Food Chemistry 27(2):501-507. 2011
Bligh, E. G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Canadian.Journal of Biochemistry and Physiology. 37(8): 911-917. 1959
Calfunao, R. Caracterización de las propiedades tecnológicas de la harina de cotiledón de la semilla de acacia de tres espinas (Gleditsia triacanthos L). Memoria Ingeniero Agrónomo. Santiago, Chile: Facultad de Ciencias Agronómicas, Universidad de Chile. 2012
Carrillo, S.; Casas, M.; Ramos, F.; Pérez-Gil, F., Sánchez, I. Algas marinas de baja california Sur, México: Valor nutrimental. Archivos Latinoamericanos de Nutrición 52(4): 400-405. 2002
Cervantes J.; Rascón, J.; Ramos, M.; Sánchez, M., Jiménez, E. Estudio de algunas propiedades funcionales de residuos agroindustriales de frutos tropicales. En: Congreso Nacional de Ingeniería Bioquímica. Acapulco, México. 2010
Chan, P.T.; Matanjun, P. Chemical composition and physicochemical properties of tropical red seaweed Gracilaria changii. Food Chemistry 221: 302-310. 2017
Chew, Y.L.; Lim, Y.Y.; Omar, M:, Khoo, K.S. Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT 41:1067-1072. 2008
Choi, Y.S.; Han, D.J.; Kim, H.Y.; Kim, H.W. Effects of Laminaria janponica on the physico-chemical and sensory character¬istics of reduced-fat pork patties. Meat Science 91: 1-7. 2012
Cifuni, G.; Napolitano, F.; Riviezzi, A.; Braghieri, A.; Girolami, A. Fatty acids profile, colesterol content and tenderness of meat from Podolian Young bulls. Meat Science 67: 289-297. 2004
Cofrades, S.; Benedí, J.; Garcimartin, A.; Sanchez-Muniz, F.J,; Jimenez-Colmenero, F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Research International 99:1084-1094. 2017
Colin-Henrion, M.; Mehinagic, E.; Renard, C.; Richomme, P.; Jourjon, F. From apple to applesauce: Processing effects on dietary fibres and cell wall polysaccharides. Food Chemistry 117: 254-260. 2009
Cortes, M.; Emery, F.; Avila, M.; Rodriguez, D.; Vásquez, S.; Riquelme, R. La Huerta del Mar. Universidad Santo Tomás. Centro CAPIA. 2012
Cruz-Suárez, L.E.; Ricque-Marie, D.; Tapia-Salazar, M.; Guajardo-Barbosa, C. Uso de harina de kelp (Macrocystis pyrifera) en alimentos para camarón. En: Avances en Nutrición Acuícola V. Memorias del Simposium Internacional de Nutrición Acuícola (5, 19-22 nov, Mérida). Yucatán, México. 2000
Dawczynski, C., Schubert, R.; Jahreis, G. Amino acids, fatty acids and dietary fibre in edible seaweed products. Food Chemistry 103: 891-899. 2007
De Escalada, P.M.; González, P.; Sette, P.; Portillo, F.; Rojas, A.M.; Gerschenson, L. Effect of processing on physico-chemical characteristics of dietary fibre concentrates obtained from peach (Prunus persica L.) peel and pulp. Food Research International49: 184–192. 2012
Denis, C.; Morançais, M.; Li, M.; Deniaud E.; Gaudin P.; Wielgosz-Collin, G.; Barnathan, G.; Jaouen, P.; Fleurence, J. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chemistry 119: 913–917. 2010
Dewanto, V.; Wu, X.; Adom, K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50(10): 3010-3014. 2002
Díaz-Rubio, M.E.; Serrano, J.; Borderias, J.; Saura-Calixto, F. Technological effect and nutritional value of dietary antioxidant fucus fiber added to fish mince. Journal of Aquatic Food Product Technology 20(3): 295-307. 2011
Dueñas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Mollá, E.; Esteban, R.M.; Martín-Cabrejas, M.A. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT- Food Science and Technology 66: 72-78. 2016
Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fiber-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review. Food Chemistry 124(2): 411-421. 2011
FAO/MINSAL, (Food and agriculture organization of the united nations), Italia y MINSAL (Ministerio de Salud), Chile. 2010. Tabla chilena de composición química de alimentos, actualización 2010. [En línea]. http://www.minsal.gob.cl/portal/url/page/minsalcl/g_proteccion/g_alimentos/prot_composicion.html
Fernández-Martín, F.; López-López, I.; Cofrades, S.; Jiménez Colmenero, F. Influence of adding Sea Spaghetti seaweed and replacing the animal fat with olive oil or a konjac gel on pork meat batter gelation. Potential protein/alginate association. Meat Science 83: 209–217. 2009
Fleury, N.; Lahaye, M. Chemical and physico-chemical characterisation of fibres from Laminaria digitata (Kombu Breton): A physiological approach. Journal of Science of Food and Agriculture 55(3): 389-400. 1991
Gómez-Ordóñez, E., Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible sea¬weeds from the northwestern Spanish coast. Food Research International 43: 2289–2294. 2010
González, M.E.; Anthon, G.E.; Barrett, D.M. Onion cells after high pressure and thermal processing: comparison of membrane integrity changes using different analytical methods and impact on tissue texture. Journal of Food Science 75 (7): 426-432. 2010
Granito, M.; Guerra, M.; Torres, A.; Guinand, J. Efecto del procesamiento sobre las propiedades funcionales de Vigna sinensis. Interciencia 29(9): 521-526. 2004
Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science and Technology 22: 315-326. 2011
Hevia, F.; Berti, M.; Wilkens, R.; Yévenes, C. Contenido de proteína y algunas características del almidón en semillas de amaranto (Amaranthus spp.) cultivado en Chillan, Chile. Agro Sur 30(1): 24-31. 2002 http://www.subpesca.cl/portal/616/w3-article-849.html#noticias_especies_h
Jiménez Colmenero, F.; Ayo, M.J.; Carballo, J. Physicochemical properties of low sodium frankfurter with added walnut: effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Science 69:781-788. 2005
Jimenez-Colmenero, F.; Cofrades, S.; López-López, I.; Ruiz- Capillas, C.; Pintado, T.; Solas, M.T. Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters as affected by the addition of konjac and seaweed. Meat Science 84: 356–363. 2010
Jing, Y.; Chi, Y-J. Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chemistry 138:884–889. 2013
Kadam, S.U.; Prabhasankar, P. Marine foods as functional ingredients in bakery and pasta products. Food Research International. 43.1975–1980. 2010
Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different Chickpea (Cicer arietinum L) cultivars. Food Chemistry. 91(3): 403-411. 2005
Kumar, M.; Gupta, V.; Kumari, P.; Reddy, C.R.K.; Jha, B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. Journal of Food Composition and Analysis 24:270-278. 2011
Kutos, T.; Golob, T.; Kac, M.; Plestenjak, A. Dietary fibre content of dry and processed beans. Food Chemistry 80: 231-235. 2003
López, A.; Rico, M.; Rivero, A.; Suárez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry 125:1104-1109. 2011
López-Huertas, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milk. A review of intervention studies. Pharmacological Research 61(3): 200-207. 2010
López-López, I.; Cofrades, S.; Yakan, A.; Solas, M.T.; Jiménez-Colmenero, F. Frozen storage characteristics of low-salt and low-fat beef patties as affected by Wakame addition and replacing pork backfat with olive oil-in-water emulsion. Food Research International 43: 1244 – 1254. 2010
Lourenço, S.; Barbarino, E.; De-Paula, J.C.; Otávio, L.; Lanfer, S.U. Amino acid composition, protein content, and calculation of nitrogen to protein conversion factors for nineteen tropical seaweeds. Phycological Research. 50(3): 233-241. 2002
MacArtain, P.; Gill, C.; Brooks, M.; Campbell, R.; Rowland, I. Nutritional value of edible seaweeds. Nutrition Reviews 65(12): 535 – 543. 2007
Mardones, A.; Cordero, R.; Augsburger, A.; De los Ríos-Escalante, P. Desarrollo del ensilado del alga Gracilaria chilensis para la alimentacion de abalón rojo Haliotis rufescens. Latin American Journal of Aquatic Research 43(2): 295-303. 2015
Mendis, E.; Kim, S. Present and Future Prospects of Seaweeds in Developing Functional Foods. Advances in Food and Nutrition Research 64: 1-15. 2011
Moure, A.; Sineiro, J.; Domınguez, H.; Parajo, J.C. Functionality of oilseed protein products: A review. Food Research International 39(9): 945-963. 2006
Muñoz, G. Propiedades tecnológicas de harina de piñones, crudos y cocidos. Tesis Ingeniero Agrónomo y Magister en Ciencias Agropecuarias, Mención Producción Agroindustrial. Santiago, Chile: Facultad de Ciencias Agronómicas, Universidad de Chile. 2008
Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernández, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the ed¬ible seaweeds Ulva lactuca and Durvillaea antárctica. Food Chemistry 99: 98–104. 2006
Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llantén, C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. European Journal of Lipid Science Technology 111: 320-327. 2009
Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International 66:36-44. 2014
Peso-Echarri, P., Frontela-Saseta, C., González-Bermúdez, C., Ros-Berruezo, G., Martínez-Graciá, C. Polysaccharides from seaweed as ingredients in marine aquacult ure feeding: alginate, carrageenan and ulvan. Revista de Biología Marina y Oceanografía 47(3): 373-381. 2012
Plaza, M.; Cifuentes, A.; Ibáñez, E. In the search of new functional food ingredients from algae. Trends in Food Science and Technology 19:31-39. 2008
Polat, S; Ozogul, Y. Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Miditerranean coast. Oceanologia 55(2): 375-391. 2013
Quitral, V.; Morales, C.; Sepúlveda, M.; Schwartz, M. Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente fincional. Revista Chilena de Nutrición 39(4): 196-202. 2012
Raghavendra, S.N.; Swamy, S.R.; Rastogi, N.K.; Raghavarao, K.; Kumar, S.; Tharanathan, R. Grinding characteristics and hydration properties of coconut residue: A source of dietary fibre. Journal of Food Engineering 72(3): 281- 286. 2006
Rioux, L-E.; Beaulieu, L.; Turgeon, S. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocolloids. 68:255-265. 2017
Roohinejad, S.; Koubaa, M.; Barba, F.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International 99: 1066–1083. 2017
Sabeena, K.H.F.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry 138: 1670-1681. 2013
San Martín, V. Caracterización tecnológica y funcional de dos tipos de harina de avena (Avena sativa L.). Memoria Ingeniero Agrónomo. Santiago, Chile: Facultad de Ciencias Agronómicas, Universidad de Chile. 2012
Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, protein and ash contents of processed edible seaweeds. Food Chemistry 85(3): 439-444. 2004
Sangronis, E.; Machado, C.; Cava, R. Propiedades funcionales de las harinas de leguminosas (Phaseolus vulgaris y Cajan cajan) germinadas. Interciencia 29(2): 80- 85. 2004
Santelices, B. Catálogo de las Algas Marinas Bentónicas de la Costa Temperada del Pacífico de Sudamérica. Ed. Universidad Católica de Chile, Santiago (Chile). 1991
Sanz-Pintos, N.; Pérez-Jiménez, J.; Buschmann, A.; Vergara-Salinas, J.; Pérez-Correa, J.R.; Saura-Calixto, F. Macromolecular antioxidants and dietary fiber in edible seaweeds. Journal of Food Science 82(2): 289-295. 2017
Saura-Calixto, F. Antioxidant Dietary Fiber Product: A New Concept and a Potential Food Ingredient. Journal of Agricultural and Food Chemistry. 46:4303-4306. 1998
Saura-Calixto, F; Bravo, L. Dietary Fiber – Associated compounds: Chemistry, Analisys and Nutritional Effects of Polyphenols. HandBook of Fiber Dietary. In: Cho S.S. and M.L. Dreher (ed.). New York, United States of America. 2002
Schmid, M.; Guihéneuf, F.; Stengel, D.B. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta). Food Chemistry 208: 161–168. 2016
Seguel, C.G.; Soto, E.; Rojas, J. Gracilaria chilensis: Bioethanol production and by-product characterization. Journal of Coastal Zone Management. 18(2): 1-3. 2015
Singh, U. Functional properties of grain legume flours. Journal of Food Science and Technology 38(3): 191-199. 2001
Smith, S.A.; King, R.E.; Min, D. Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chemistry 102(4):1208 – 1213. 2007
Soong, Y.; Barlow, P. Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry 88(3): 411-417. 2004
Souza, B.; Cerqueira, M.A.; Martins, J.T.; Quintas, M.; Ferreira, A.; Teixeira, J.A.; Vicente, A.A. Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts. Journal of Agricultural and Food Chemistry. 59: 5589-5594. 2011
Susanto, E.; Fahmi, A.S.; Abe, M.; Hosokawa, M.; Miyashita, K. Lipids, fatty acids, and fucoxanthin content from temperate and tropical Brown seaweeds. Aquatic Procedia 7:66-75. 2016
Swain, T., Hillis, W. The phenolic constituents of Prunus domestica L. – the cuantitative analysis of phenolic constituents. Journal of Science of Food and Agriculture. 10: 63 – 68. 1959
Talcott, S.T.; Duncan, C.E.; Del Pozo, D.; Gorbet, D.W. Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chemistry 89: 77-84. 2005
Tello-Ireland, C.; Lemus-Moncada, R.; Vega-Galvez, A.; López, J.; Di Scala, K. Influence of hot-air temperatura on drying kinetics, functional properties, color, phycobiliproteins, antioxidant capacity, texture and agar yield of a alga Gracilaria chilensis. LWT- Food Science and Technology. 44:212-2118. 2011
Thebaudin, J.Y.; Lefebvre, A.C.; Harrington, M.; Bourgeois, C.M. Dietary fibres: Nutritional and technology interest. Trends in Food Science and Technology 8(2): 41-48. 1997
Toledo, M.I.; Ávila, M.; Manríquez, A.; Olivares, G.; Soto, A.; Saavedra, S. Algas: Insumo alternativo para la alimentación de especies acuícolas. Ediciones Universitarias de Valparaíso. Pontificia Universidad Católica de Valparaíso. Valparaíso, Chile. 2009
Turkmen, N.; Sari, F.; Velioglu, S. The effect of cooking meted on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry 93(4): 713-718. 2005
Vallejo, F.; Tomás-Barberán, F.A.; García-Viguera, C. Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. European Food Research and Technology 215: 310-316. 2002
Verma, P.; Kumar, M.; Mishra, G.; Sahoo, D. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals. Bioeresource Technology 226:132-144. 2017
Vidal, A.; Fallarero, A.; Silva, E.R.; de Oliveira, A.M., de Lima, A.; Pavan, R.; Vuorela, P.; Mancini-Filho, J. Composición química y actividad antioxidante del alga marina roja Bryothamnion triquetrum (S.G.Gmelin) Howe. Brazilian Journal of Pharmaceutical Sciences 42(4): 589-600. 2006
Wang, T.; Jónsdóttir, R.; Kristinsson, H.G.; Hreggvidsson, G.O.; Jónsson, J.; Thorkelsson, G.; Ólafsdóttir, G. Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT - Food Science and Technology 43: 1387-1393. 2010
Wood, J.; Richardson, R.; Nute, G.; Fisher, A.; Campo, M.; Kasapidou, E. Effects of fatty acids on meat quality. A review. Meat Science 66(1): 21-32. 2003
Yaich, H.; Garna, H.; Bchir, B.; Besbes, S.; Paquot, M.; Richel, A.; Blecker, C.; Attia, H. Chemical composition and functional properties of dietary fibre extracted by Englyst and Prosky methods from the alga Ulva lactuca collected in Tunisia. Algal Research 9:65-73. 2015