Isotermas de sorción de puré deshidratado a partir de diferentes variedades de raíz

Contenido principal del artículo

María M. Brousse
Ramón A. Linares
María L. Vergara
Andrea B. Nieto

Resumen

Las isotermas de sorción de agua de puré de mandioca deshidratado de dos variedades de raíces, Concepción y Pomberí, se determinaron para un rango de temperatura entre 25° C y 45° C. El puré de mandioca deshidratado exhibió un comportamiento Tipo II. Las isotermas de sorción mostraron que para valores de aw por debajo de 0.85, la capacidad de sorción disminuyó cuando la temperatura aumentó; comportamiento opuesto se observó a aw por encima de 0,85. El punto de inversión (aw = 0,85) se atribuyó al hecho de que los sitios más activos se expusieron a los procesos de adsorción, debido a que la movilidad molecular aumenta en las regiones amorfas por la cristalización del almidón. Los datos experimentales se ajustaron a diferentes modelos. Se obtuvieron las constantes de los modelos y los coeficientes de correlación. Las ecuaciones BET, GAB y PELEG mostraron los coeficientes de correlación más altos para todos los rangos de aw. El calor de sorción total aumentó cuando disminuyó el contenido de humedad.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Brousse, M. M., Linares, R. A., Vergara, M. L., & Nieto, A. B. (2017). Isotermas de sorción de puré deshidratado a partir de diferentes variedades de raíz. Revista De Ciencia Y Tecnología, 28(1), 28–36. Recuperado a partir de https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/201
Sección
Ingeniería, Tecnología e Informática

Citas

Tonukari, N., Cassava and the future of starch. Electronic Journal of Biotechnology. 7(1): p. 5–8. 2004.

Chiang, B. Y. and Johnson, J. A., Gelatinization of starch in extruded products. Cereal Chemistry. 54: p. 436-443. 1977

Chen, C., Obtaining the isosteric sorption heat directly by sorption isotherm equations. Journal of Food Engineering. 74(2): p. 178–185. 2006.

Al-Muhtaseb, A. H.; McMinn, W. and Magee, T., Water sorption isotherm of starch powders Part 1: Mathematical description of experimental data. Journal of Food Engineering. 61(3): p. 297–307. 2004a.

McMinn, W. A. and Magee, T. R., Studies on the effect of temperature on the moisture sorption characteristics of potatoes. Journal of Food Process Engineering. 22: p. 113–128. 1999.

Chang, Y.; Cheah, P. and Seow, C., Plasticizing effects of water on physical properties of tapioca starch films in the glassy state. Journal of Food Science. 65: p. 445–451. 2000.

Chatakanonda, C.; Dickinson, L. and Chinacohoti, P., Mobility and distribution of water in cassava and potato starches by H and H NMR. Journal of Agricultural and Food Chemistry. 51: p. 7445–7449. 2003.

Mali, S.; Sakanaka, L. S.; Yamashita, F. and Grossmann, M. V. E., Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers. 60: p. 283–289. 2005.

Sanni, L.; Atere, C. and Ayoade, K., Moisture sorption isotherms of fufu and tapioca at different temperatures. Journal of Food Engineering. 34: p. 203–212. 1997.

King, C. J. Rate of moisture sorption and desorption in porous, dried foodstuffs. Food Technology. 22: p. 509–514. 1968.

Tsami, E.; Maroulis, Z. B.; Morunos-Kouris, D. and Saravacos, G. D., Heat of sorption of water in dried fruits. International Journal of Food Science and Technology. 25: p. 350–359. 1990.

Rizvi, S. S. H., Thermodynamic properties of food in dehydration. In: M. Rao, M., and S., Rizvi, (2nd ed.). Engineering properties of food. NewYork: Marcel Dekker Inc p. 223–309. 1995.

Wang, N. and Brennan, J. G., Moisture sorption isotherm characteristics of potatoes at four temperatures. Journal of Food Engineering. 14: p. 269–282. 1991.

Sereno, A.M.; Moreira, R. and Martinez, E., Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous solutions of sugar and salt. Journal of Food Engineering. 47: p. 43–49. 2001.

Siripatrawan, U. and Jantawat, P., Determination of moisture sorption isotherms of jasmine rice crakers using BET and GAB models. Food Science Technology. 12: p. 459–465. 2006.

Iglesias, H. A. and Chirife, J., An empirical equation for fitting water sorption isotherms of fruits and related products. Canadian Institute of Food Science and Technology Journal. 11: p. 12–18. 1978.

Perdomo, J.; Cova, A.; Sandoval, A. J.; García, L.; Laredo, E. and Müller, A. J., Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers. 76: p. 305-313. 2009.

Erbas, M.; Ertugay, M. and Certel, M., Moisture adsorption behaviour of semolina and farina. Journal of Food Engineering. 69: p.191-198. 2005.

McLaughlin, C.P. and Magee, T.R., The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering. 35(3): p. 267-280. 1998.

Kaymak-Ertekin, F. and Sultanoglu, M., Moisture sorption isotherm characteristics of peppers. Journal of Food Engineering. 47: p. 225-231. 2001.

Fasina, O. O. and Sokhansanj, S., Equilibrium moisture relations and heat of sorption of Alfafa Pellets. Journal of Agriculture Engineering Research. 56: p. 51–63. 1993.

Aguerre, R. J.; Suarez, C. and Viollaz, P., New BET Type Multilayer Sorption Isotherms. Part: Modelling Water Sorption in Foods. Lebensmittel-Wissenschaft und-Technologie. 22: p. 192-195. 1989.

Ferro Fontan, C.; Chirife, J.; Sancho, E. and Iglesias, H. A., Analysis of a model for water sorption phenomena in foods. Journal Food Science. 47: p. 1590. 1982.

Anderson, R., Modifications of the BET equation. Journal of the American Chemical Society. 68: p. 686–691. 1946.

Guggenheim, E., Applications of statistical mechanics,1966, In: M. Rao, M. and S., Rizvi, (2nd ed.). Engineering properties of food. NewYork: Marcel Dekker Inc. p. 251. 1995.

De Boer, J. (1953). The dynamic character of adsorption. Clarendon Press. Also In: Rao, M. and Rizvi, S., Engineering properties of food (2nd ed.). NewYork: Marcel Dekker Inc. p. 251. 1995.

Hasley, G., Physical adsorption in non-uniform surfaces. Journal of Chemistry and Physics. 16: p. 931–945. 1948.

Henderson, S., A basic concept of equilibrium moisture. Agricultural Engineering. 33(1): p. 29–31. 1952.

Peleg, M., Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal Food Process Engineering. 16: p. 21–37. 1993.

Kim, S. S. and Bhowmik, S. R., Moisture sorption isotherms of concentrated yogurt and microwave vacuum dried yogurt powder. Journal of Food Engineering. 21: p. 157-175. 1994.

Pawar, V. S.; Pawar, D. K.; Rodge, V. D.; Surve, V. D. and More, D. R., Moisture adsorption isotherms of ground turmeric at different temperature. Journal of Food Science and Technology. 29: p. 170-173. 1992.

Klewicki, R.; Konopacka, D.; Uczciwek, M.; Irzyniec, Z.; Piasecka, E. and Bonazzi, C., Sorption isotherms for osmo-convectively-dried and osmo-freeze-dried apple; sour cherry and blackcurrant. The Journal of Horticultural Science and Biotechnology. Isafruit Special Issue: 75-79. 2009.

Lomauro, C. L.; Bakshi, A. S. and Labuza, T. P., Evaluation of food moisture sorption isotherms equation. Part I: Fruit, Lebensmittel - Wissenschaft und Technologies. 18: p. 111-117. 1985.

Al-Muhtaseb, A.; McMinn, W. and Magee, T., Moisture sorption isotherm characteristics of food products: A review. Transactions of the Institution of Chemical Engineers Part C. 80: p. 118–127. 2002.

Brunauer, S.; Deming, L. S; Deming, W. E. and Troller, E., On the theory of Van der Waals adsorption of gases. Journal of the American Chemical Society. 62: p. 1723–1732. 1940.

van den Berg, C., Description of water activity of foods for engineering purposes by means of the G.A.B. model of sorption. In: McKenna, B. M., Engineering and Foods. Pp. 311-321. New York: Elsevier. 1984.

Hailwood, A. J. and Horrobin, S., Absorption of water by polymers: Analysis in terms of a simple model. Transactions of the Faraday Society, 42B: p. 84-102. 1946.

Sanni, L. and Kuye, A., Effect of temperatures on water sorption isotherms of some fortified cassava products, Proceedings of the 12th International Drying Symposium IDS2000, ed by Kerkhof PJAM, Coumans WJ and Mooiweer GD. Elsevier Science, Amsterdam, Paper 23. 2000.

Sanni, L.; Atere, C. and Kuye, A., Moisture Sorption Isotherms of Fufu and Tapioca at Different Temperatures. Journal of Food Engineering, 34: p. 203-2012. 1997.

Boki, K. and Ohno, S., Equilibrium isotherm equations to represent moisture sorption on starch. Journal of Food Science. 56: p. 1106–1110. 1991.

Mishra, S. and Rai, T., Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids. 20: p. 557–566. 2006.

Palou, E.; López-Malo, A. and Argaiz, A., Effect of temperature on the moisture sorption isotherms of some cookies and corn snack. Journal of Food Engineering. 31: p. 85–93. 1997.

Osundahunsi, O. F.; Seidu, K. T. and Mueller, R., Effect of presence of sulphurdioxide on acetylation and sorption isotherm of acetylated starches from cultivars of cassava. Food Chemistry. 151: p. 168–174. 2014.

Adebowale, A. R.; Sanni, L.; Awonorin, S.; Daniel, I. and Kuye, A., Effect of cassava varieties on the sorption isotherm of tapioca grits. International Journal of Food Science and Technology. 42: p. 448–452. 2007.

Vega-Gálvez, A.; Lara-Aravena, E. and Lemus-Mondaca, R., Isotermas de adsorción de harina de maíz. Ciência e Tecnologia de Alimentos. 26: p. 821-827. 2006.

Viollaz, P. E. and Rovedo, C. O., Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. Journal of Food Engineering. 40(4) : p. 287–292. 1999.

Polachini, T. C.; Betiol, L.; Lopes-Filho, J. and Telis-Romero, J., Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochimica Acta. 632: p. 79–85. 2016.

Brett, B. and Figueroa, M., Moisture sorption characteristics of starchy products. Oat flour and rice flour. B.Sc. thesis, Simón Bolívar University, Venezuela (in Spanish) (2005).

Aviara, N. A., and Ajibola, O. O. Thermodynamics of moisture sorption in melon seed and cassava. Journal of Food Engineering. 55(2): p. 107–113. 2002.

Timmermann, E. O.; Chirife, J. and Iglesias, H. A., Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering. 48: p. 19–31. 2001.

Ciro, H.; Osorio, J. and Cortes, E., Determination of the isosteric heat to plantain pulp (musa paradisiaca) by sorption isotherms. Dyna. 156: p. 127-134. 2008.

McMinn, W. A. and Magee, T. R., Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering. 60: p. 155–157, 2003. 2003.

Delgado, A. E., and Sun, D.W. Desorption isotherms for cooked and cured beef and pork. Journal of Food Engineering. 51: p. 163– 170. 2002b.

Jayendra Kumar, A.; Singh, R. R. B.; Patil, G. R. and Patel, A. A., Effect of temperature on moisture desorption isotherms of kheer. Lebensmittel-Wissenschaft und-Technologie. 38: p. 303–310. 2005.

Al-Muhtaseb, A. H.; McMinn, W. and Magee, T., Water sorption isotherm of starch powders Part 2: Thermodynamic characteristics. Journal of Food Engineering. 62(2): p. 135–142. 2004b.

Iglesias, H. A. and Chirife, J., Isosteric heat of water vaporsorption on dehydrated foods Part I: Analysis of the differential heat curves. Lebensmittel-Wissenschaft und-Technologie. 9: p. 116–122. 1976.

Van den Berg, C. (1981). Vapour sorption equilibria and other water–starch interactions: Physico–chemical approach. Ph.D. Thesis, Agricultural University Wageningen, The Netherlands. In Al-Muhtaseb et al. (2004a).

Contador de visualizaciones: Resumen : 80 vistas.