Influencia del modelo de densidad en el modelado numérico de convección natural cercano al punto de inversión de densidad del agua durante la transferencia de calor conjugado transitoria

Contenido principal del artículo

Carlos Ariel Schvezov
Alejandro Rafael Lespinard
Mario Roberto Rosenberger

Resumen

La pasteurización de productos lácteos mediante el método de baja temperatura y tiempo prolongado es un tratamiento térmico simple y eficaz que requiere de baja inversión, siendo atractivo para la producción de leche a baja escala. Sin embargo, en su diseño del proceso el período de enfriamiento de la pasteurización a menudo no es considerado. El objetivo de este trabajo fue evaluar la transferencia de calor entre dos cilindros cerrados verticales concéntricos llenos de agua durante el proceso de enfriamiento de un tratamiento térmico discontinuo. Para este proceso, la temperatura del recinto exterior osciló entre 2 ºC y 4 ºC, cerca de la temperatura de inversión de la densidad del agua (3,98 ºC), mientras que la temperatura del recinto interno osciló entre 63 y 4 C. Esto se simuló utilizando el método de volumen finito del sofware OpenFOAM mediante algoritmos para transferencia de calor conjugados. Se analizaron, compararon y validaron el uso diferentes modelos de densidad del agua para la simulación con datos experimentales. Los modelos de densidad que no tenían punto de inversión no pudieron modelar este proceso con precisión y subestimaron el tiempo que requiere el recinto interior para alcanzar la temperatura final (4 ºC).

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Schvezov, C. A., Lespinard, A. R., & Rosenberger, M. R. (2025). Influencia del modelo de densidad en el modelado numérico de convección natural cercano al punto de inversión de densidad del agua durante la transferencia de calor conjugado transitoria. Revista De Ciencia Y Tecnología, 43(1), 56–71. https://doi.org/10.36995/j.recyt.2025.43.005
Sección
Ingeniería, Tecnología e Informática
Biografía del autor/a

Alejandro Rafael Lespinard, Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnología (IMITAB), CONICET. Instituto de Ciencias Básicas y Aplicadas. Universidad Nacional de Villa María. Villa María, Córdoba, Argentina.

Alejandro Rafael Lespinard, Lic. en biotecnología. Doctor de la Facultad de Ciencias Exactas (UNLP). Profesor adjunto UNVM, Investigador adjunto (CIC-CONICET) Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB. alespinard@conicet.gov.ar

Mario Roberto Rosenberger, Instituto de Materiales de Misiones (IMAM), CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones (UNaM). Posadas, Misiones, Argentina.

Mario Roberto Rosenberger, Ing. Químico, Doctor en Ciencia y Tecnología: Mención Materiales. Prof. Titular Fceqyn-UNaM, Investigador Independiente (CIC-Conicet) Instituto de Materiales de Misiones (CONICET-UNaM). Docente-Investigador Cat. II. rrmario@fceqyn.unam.edu.ar

Recibido 2024-12-02
Aceptado 2025-04-28
Publicado 2025-06-23

Citas

A. Quintino, E. Ricci, S. Grignaffini, M. Corcione, Heat Transfer Correlations for Natural Convection in Inclined Enclosures Filled with Water around Its Density-Inversion Point, Int. J. of Thermal Sc., vol. 116, June 2017, pp. 310–19. https://doi.org/10.1016/j.ijthermalsci.2017.03.008.

A.M. Martinez, M.R. Rosenberger, Modelado Numérico de Pasteurización Artesanal de Leche y Jugos Naturales, Mecánica Computacional Vol XXXII, (2013) 2485-2501.

B. Gebhart, J.C. Joseph, A New Density Relation for Pure and Saline Water, Deep Sea Research, vol. 24, no. 9, Sept. 1977, pp. 831–48. https://doi.org/10.1016/0146-6291(77)90475-1

C. Cianfrini, M. Corcione, E. Habib, A. Quintino, Natural Convection of Water Near 4°C in a Bottom-Cooled Enclosure, Energy Procedia, vol. 82, Dec. 2015, pp. 322–27. https://doi.org/10.1016/j.egypro.2015.12.040.

C. Greenshields, H. Weller. Notes on computational fluid dynamics: General principles, CFD Direct Ltd, Reading, UK, 2022.

C.J. Kim, S.T. Ro, J.S. Lee, M.G. Kim, Two-Dimensional Freezing of Water Filled between Vertical Concentric Tubes Involving Density Anomaly and Volume Expansion, Int. J. of Heat and Mass Transfer, vol. 36, no. 10, July 1993, pp. 2647–56. https://doi.org/10.1016/S0017-9310(05)80201-7.

C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill, 1999.

C.V. Raghavarao, Y.V.S.S. Sanyasiraju, Natural Convection Heat Transfer of Cold Water in an Eccentric Horizontal Cylindrical Annulus — a Numerical Study, Comput. Mech., vol. 18, no. 6, Dec. 1996, pp. 464–70. Springer Link, https://doi.org/10.1007/BF00350254.

Código Alimentario Argentino – Capítulo VIII: Alimentos Lácteos. Art. 558.

D.W. Green, Ed., Perry’s Handbook of Chemical Engineer 8th Edition, Section 2 Physical and Chemical Data, Table 2-32, McGraw-Hill, 2008; pp 2-103.

E.E. Badin, M.M. Mercatante, R.H. Mascheroni, R.A. Quevedo-Leon, A. Ibarz, P.D. Ribotta, A.R. Lespinard, Effect of Pasteurization on Color, Ascorbic Acid and Lycopene of Crushed Tomato: A Computational Study with Experimental Validation, J. of Food Eng., vol. 337, Jan. 2023, p. 111218. https://doi.org/10.1016/j.jfoodeng.2022.111218.

E.E. Badin, P.E.D. Augusto, R.A. Quevedo-Leon, A. Ibarz, P.D. Ribotta, A.R. Lespinard, Raspberry Pulp Pasteurization: Computational Fluid Dynamics Modeling and Experimental Validation of Color and Bioactive Compound Retention. J. of Food Process Eng., vol. 46, no. 1, Nov. 2022, p. e14168. https://doi.org/10.1111/jfpe.14168.

E.M. Sparrow, M. Charmchi. Natural Convection Experiments in an Enclosure between Eccentric or Concentric Vertical Cylinders of Different Height and Diameter, Int. J. of Heat and Mass Transfer, vol. 26, no. 1, Jan. 1983, pp. 133–43. https://doi.org/10.1016/S0017-9310(83)80015-5.

F. Kohlrausch, Praktische Physik, Band 3 – Tabellen und Diagramme, 23 Auflage, Table 65, B.G. Teubner Stuttgart, 1986, pp 88 – 90.

F. Kreith, R.M. Manglik, M.S. Bohn, Principles of Heat Transfer 7th Edition, Appendix 2: Data Tables, Table 13. Cengage Learning, 2011, p. A14.

J.P. Holman, Transferencia de Calor. 1st ed., Apéndice A, Tabla A9, McGraw-Hill, 1986, pp 600.

K. Sasaguchi, K. Kuwabara, K. Kusano, H. Kitagawa, Transient Cooling of Water around a Cylinder in a Rectangular Cavity—a Numerical Analysis of the Effect of the Position of the Cylinder, Int. J. of Heat and Mass Transfer, vol. 41, no. 20, Oct. 1998, pp. 3149–56. https://doi.org/10.1016/S0017-9310(98)00064-7.

M. Charmchi, E. M. Sparrow, Analysis of Natural Convection in the Space Between Concentric Vertical Cylinders of Different Height and Diameter, Numer. Heat Transfer, vol. 5, no. 2, Apr. 1982, pp. 119–44. https://doi.org/10.1080/10407788208913439.

M. Corcione, A. Quintino, Penetrative convection of water in cavities cooled from below, Comput. and Fluids, vol 123, Dec. 2015, pp 1-9. https://doi.org/10.1016/j.compfluid.2015.09.003.

M.A. Medebber, R. Noureddine, Numerical Study of Natural Convection in a Vertical Cylindrical Partially Annular, Mechanics and Mechanical Eng., vol. 22, no. 1, Jan. 2018, pp. 77–92. https://doi.org/10.2478/mme-2018-0008.

M.P. Nguyen, N. Van Hap, Computational Overview of Fluid Structure Interaction, Numerical Investigation of Natural Convection and Entropy Generation of Water near Density Inversion in a Cavity Having Circular and Elliptical Body. IntechOpen, 2020. www.intechopen.com, https://doi.org/10.5772/intechopen.95301.

N. Zhan, L. Ding, Y. Chai, J. Wu and Y. Xu. Experimental Study on Natural Convective Heat Transfer in a Closed Cavity. Therm. Sci. and Eng. Prog., vol. 9, Mar. 2019, pp. 132–41. https://doi.org/10.1016/j.tsep.2018.11.009.

N.S. Gibanov, and M.A. Sheremet. Natural Convection in a Cubical Cavity with Different Heat Source Configurations. Therm. Sci. and Eng. Prog., vol. 7, Sept. 2018, pp. 138–45. https://doi.org/10.1016/j.tsep.2018.06.004.

P. Dumalisile, R.C. Witthuhn, R.J. Britz, Impact of Different Pasteurization Temperatures on the Survival of Microbial Contaminants Isolated from Pasteurized Milk. Int. J. of Dairy Technol., vol. 58, no. 2, May 2005, pp. 74–82. https://doi.org/10.1111/j.1471-0307.2005.00189.x.

P. Fellows, Food Processing Technology: Principles and Practice, Chapter 11: Pasteurisation. 4th ed., Woodhead Publishing, 2017, p 563.

P.M. Teertstra, M.M. Yovanovich, J.R. Culham, Models and Experiments for Laminar Natural Convection From Heated Bodies in Enclosures, Volume 1, ASMEDC, 2004, pp. 443–53. https://doi.org/10.1115/HT-FED2004-56633.

R.I. Issa, Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting, J. of Comput. Phys., vol. 62, no. 1, Jan. 1986, pp. 40–65. https://doi.org/10.1016/0021-9991(86)90099-9.

S. Kumar and S.K. Mahapatra. An Experimental and Numerical Analysis of Natural Convection in a Partially Open Cuboid Enclosure with a Cylindrical Obstacle. Therm. Sci. and Eng. Prog., vol. 45, Oct. 2023, p. 102118. https://doi.org/10.1016/j.tsep.2023.102118.

S. Pandey, Y.G. Park, M.Y. Ha, An Exhaustive Review of Studies on Natural Convection in Enclosures with and without Internal Bodies of Various Shapes, Int. J. of Heat and Mass Transfer, vol. 138, Aug. 2019, pp. 762–95. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.097.

S.L. Braga, R. Viskanta. Effect of Density Extremum on the Solidification of Water on a Vertical Wall of a Rectangular Cavity, Exp. Therm. and Fluid Sci., vol. 5, no. 6, Nov. 1992, pp. 703–13. https://doi.org/10.1016/0894-1777(92)90114-K.

S.S. Priam, M.Md. Ikram, S. Saha and S.C. Saha. Conjugate Natural Convection in a Vertically Divided Square Enclosure by a Corrugated Solid Partition into Air and Water Regions. Therm. Sci. and Eng. Prog., vol. 25, Oct. 2021, p. 101036. https://doi.org/10.1016/j.tsep.2021.101036.

T. Michalek, T.A. Kowalewski, B. Sarler, Natural Convection for Anomalous Density Variation of Water: Numerical Benchmark, Progress in Computational Fluid Dynamics, An International Journal, vol. 5, no. 3/4/5, 2005, p. 158-169. https://doi.org/10.1504/PCFD.2005.006751.

W.M. Haynes, Ed., CRC Handbook of Chemistry and Physics 97th ed., Section 6: Fluid Properties, CRC Press, Boca Raton, FL, 2017, pp 6-1 – 6-2.

W.R. Debler, On the Analogy between Thermal and Rotational Hydrodynamic Stability, Journal of Fluid Mechanics, vol. 24, no. 1, Jan. 1966, pp. 165–76. Cambridge University Press, https://doi.org/10.1017/S0022112066000569.

Y.A. Cengel, J.M. Cimbala, R.H. Turner, Fundamentals of Thermal-Fluid Sciences 5th de., Appendix 1: Property Tables and Charts (SI units), Table A-15, McGraw-Hill, New York, 2017, p. 994.

Y.P. Hu, Y.R. Li, C.M. Wu, Comparison Investigation on Natural Convection of Cold Water near Its Density Maximum in Annular Enclosures with Complex Configurations, Int. J. of Heat and Mass Transfer, vol. 72, May 2014, pp. 572–84. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.047.

Y.P. Hu,Y.R. Li, X.F. Yuan, C.M. Wu, Natural Convection of Cold Water near Its Density Maximum in an Elliptical Enclosure Containing a Coaxial Cylinder, Int. J. of Heat and Mass Transfer, vol. 60, May 2013, pp. 170–79. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.059.

Y.R. Li, Y.P. Hu, X.F. Yuan, Natural Convection of Water Near Its Density Maximum around a Cylinder Inside an Elliptical Enclosure along Slender Orientation, Numer. Heat Transfer, Part A, vol. 62, no. 10, Nov. 2012, pp. 780–97. https://doi.org/10.1080/10407782.2012.715978.

Contador de visualizaciones: Resumen : 31 vistas.