Kombucha y sus derivados deshidratados y liofilizados: caracterización fisicoquímica, microbiológica y evaluación de toxicidad in vivo
Contenido principal del artículo
Resumen
Kombucha es una biopelícula compuesta por un cultivo simbiótico de bacterias y levaduras, conocido como SCOBY (Symbiotic Culture of Bacteria and Yeast). El SCOBY sufre procesos de deterioro y pérdida de atributos nutricionales, bioactivos y sensoriales, lo que impacta negativamente en su vida útil. Estas pérdidas pueden evitarse mediante métodos de secado, que ayudan a prolongar la vida útil y conservar los compuestos de acción de sus constituyentes. El objetivo de este estudio fue someter y evaluar Kombucha SCOBY a las técnicas de deshidratación por calor y liofilización. Los análisis incluyeron pH, sólidos solubles totales, acidez titulable total, turbidez, contenido de compuestos fenólicos totales, actividad antioxidante, evaluación microbiológica y pruebas de toxicidad in vivo. Todos los análisis fueron evaluados estadísticamente a un nivel de probabilidad del 5%, utilizando el software SAS. Tanto las bebidas de Kombucha como los productos secos exhibieron cantidades considerables de compuestos fenólicos y actividad antioxidante. Los recuentos de microorganismos oscilaron entre 104 y 108 CFU.ml-1 para bebidas y productos desarrollados. En las pruebas in vivo con Caenorhabditis elegans, no se observó un aumento en la mortalidad y los gusanos alimentados con los productos fermentados mostraron un mayor crecimiento.
Descargas
Detalles del artículo
La Revista de Ciencia y Tecnología sostiene su compromiso con las políticas de Acceso Abierto a la información científica, al considerar que tanto las publicaciones científicas como las investigaciones financiadas con fondos públicos deben circular en Internet en forma libre y gratuita. Los trabajos publicados en la Revista de Ciencia y Tecnología están bajo la licencia Creative Commons Atribución-NoComercial 2.5 Argentina.
Aceptado 2024-02-08
Publicado 2024-07-10
Citas
Amarasekara, A.S.; Wang, D.; Grady, T.L. A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Applied Sciences, 2(2), 2020.
Amarasinghe, H., Weerakkody, N.S., Waisundara, V.Y. Evaluation of 257 physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during 258 extended periods of fermentation. Food Science and Nutrition, 6(3), 659-665, 2018.
AOAC - Association of Official Analytical Chemists. Official methods of analysis of the Association of the Analytical Chemists. 17th ed. Virginia, 2000.
Augusti, P.R., Brasil, A.V.S., Souto, C., Göethel, G., De Oliveira Rios, A., Emanuelli, T., Bürger, M.E., Garcia, S.C. Microcystin-LR exposure induces oxidative damage in Caenorhabditis elegans: Protective effect of lutein extracted from marigold flowers. Food Chemistry Toxicology. 109, 60–67, 2017.
BLOOR, S.J. Overview of methods for analysis and identification of flavonoids, in: Methods in Enzymology. Elsevier, 3–14, 2001.
Borges, S.; Barbosa, J.; Silva, J.; Gomes, A.M.; Pintado, M.; Silva, C.L.M.; Morais, A.M. M.B.; Teixeira, P.A. feasibility study of Lactobacillus plantarum in fruit powders after processing and storage. International Journal of Food Science and Technology, 51(2), 381–388, 2016.
Boyer, R.; Huff, K. Using Dehydration to Preserve Fruits, Vegetables, and Meats. Virginia Cooperative Extension, 1–5, 2008.
Brasil. Ministério da Agricultura. Portaria nº 76 de 26 de novembro de 1986. Dispõe sobre os métodos analíticos de bebidas e vinagre. Diário Oficial da República Federativa do Brasil, Brasília, 28 nov. Seção 1, pt. 2, 1986.
Brenner, S. The Geneticas of Caenorhabdztzs elegans. Genetics, 77, 71– 94, 1974.
Calvo, D.R.; Martorell, P.; Genovés, S.; Gosálbez, L. Development of novel functional ingredients: need for testing systems and solutions with Caenorhabditis elegans. Trends in Food Science & Technology, 54, 197-203, 2016.
Cardoso, R. R.; Oliveira Neto, R.; D’almeida C.T.S.; Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; Barros, F.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782, 2020.
Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72, 2016.
Charão, M.F.; Souto, C.; Brucker, N.; Barth, A.; Jornada, D.S.; Fagundez, D.; Ávila, D.S.; Eifler-Lima, V.L.; Guterres, S.S.; Pohlmann, A.R.; Garcia, S.C. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. International Journal Nanomedicine, 10, 5093–5106, 2015.
De Filippis, F.; Troise, D. A.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology, 73, 11–16, 2018.
Fei, T.; Fei, J.; Huang, F.; Xie, T.; Xu, J.; Zhou, Y.; Yang, P. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Experimental Gerontology, 15, 89-96, 2017.
Fu, C.; Yan, F.; Cao, Z.; Xie, F.; Lin, J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology, 34(1), 123–126, 2014.
Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; Gioia, D.D. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology,
Chemistry and Antioxidant Activity. Journal Nutrients. 11(1), 2019.
Gramza-Michałowska, A.; Kulczyński, B.; Xindi, Y.; Gumienna, M. Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Scientiarum Polonorum Technologia Alimentaria, 15(4), 447-457, 2016.
Guiné, R.P.F.; Pinho, S.; Barroca, M.J. Study of the convective drying of pumpkin (Cucurbita maxima). Food and Bioproducts Processing. 89(4), 422–428, 2011.
Huang, S.; Vignolles, M.L.; Chen, X.D.; Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray drying of probiotics and other food-grade bacteria: A review. Trends in Food Science and Technology, 63, 1–17, 2017.
Hunt, P.R. The C. elegans model in toxicity testing. Journal of Applied Toxicology. 37, 50–59, 2017.
Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M.A. Review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538–550, 2014.
Jokicevic, K. et al. Processing of potential upper respiratory tract probiotics by spray drying. Drying Technology, 0, 1–15, 2020.
Jung, Y.; Kim, I.; Mannaa, M.; Kim, J.; Wang, S.; Park, I.; Kim, J.; Seo, Y.S. Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Science and Biotechnology. 28(1), 261-267, 2018.
Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A. Review on health benefits of kombucha nutritional compounds and metabolites. CYTA - Journal of Food, 16(1), 390–399, 2018.
Lestari, K. A. P.; Sa’diyah, L. Karakteristik Kimia dan Fisik Teh Hijau Kombucha pada Waktu Pemanasan yang Berbeda. Journal of Pharmacy and Science. 5(1), 2020.
Leung, M.C.K.; Williams, P.L. Benedetto, A.; Au, C.; Helmcke, K.J.; Aschner, M.; Meyer, J.N. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicology Science. 106, 5–28, 2008.
Lobo, R.O.; Dias, F.O.; Shenoy, C.K. Kombucha for healthy living: Evaluation of antioxidant potential and bioactive compounds. International Food Research Journal, 24(2), 541–546, 2017.
May, A.; Narayanan, S.; Alcock, J.; Varsani, A.; Maley, C.; Aktipis, A. Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 2019(9), 1–22, 2019.
Moretti, A. F.; Gamba, R.R.; Costa, M.C.; De Antoni, G.; Peláez, A.M.L. Protective Effect of Lyophilization on Fermentative, Microbiological and Sensory Properties of Kefir. International Journal of Biochemistry and Pharmacology, 1(1), 5–11, 2019.
Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA – Journal of Food, 15(4), 601-607, 2017.
Nummer, B.A. Kombucha brewing under the Food and Drug Administration model food code: Risk analysis and processing guidance abstract. Journal of Environmental Health, 76(4), 8–12, 2013.
Pauline T.; Dipti, P.; Anju, B.; Kavimani, S.; Sharma, S.K.; Kain, A.K.; Sarada, S.K.; Sairam, M.; Ilavazhagan, G.; Devendra, K.; Selvamurthy, W. Studies on toxicity, anti-stress and hepato-protective properties of kombucha tea. Biomedical and Environmental Sciences, 14(3), 207-213, 2001.
Porta-De-La-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans methods: synchronization and observation. Journal Vis. Exp, 2012.
Re, R.; Pelegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant actitity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237, 1999.
Scherer, R., Godoy, H.T. Antioxidant activity index (AAI) by the 2,2- diphenyl-1-picrylhydrazyl method. Food Chemistry. 112, 654–658, 2009.
Schulenburg, H.; Félix, M.A. The natural biotic environment of Caenorhabditis elegans. Genetics, 206, p. 55–86, 2017.
SILVA, N. et al. Manual de métodos de análise microbiológica de alimentos. 3. ed. São Paulo: Varela. 552 p, 2007.
Srihari, T.; Arunkumar, R.; Arunakaran, J.; Satyanarayana, U. Downregulation of signalling molecules involved in angiogenesis of prostate cancer cell line (PC-3) by kombucha (lyophilized). Biomedicine and Preventive Nutrition, 3(1), 53– 58, 2013b.
Srihari, T.; Karthikesan, K.; Ashokkumar, N.; Satyanarayana, U. Antihyperglycaemic efficacy of kombucha in streptozotocin-induced rats. Journal of Functional Foods, 5(4), 1794–1802, 2013a.
Szutowska J.; Rybicka I.; Pawlak-Lemańska K.; Gwiazdowska D. Spontaneously fermented curly kale juice: microbiological quality, nutritional composition, antioxidant, and antimicrobial properties. Journal Food Science. 85(4), 1248–1255, 2020.
Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9(1), 225–241, 2014.
Tu, C.; Tang, S.; Azi, F.; Hu, W.; Dong, M. Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods. 52, 81-89, 2019.
Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Tumbas Šaponjac, V.T.; Vulić, J.J. Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technology and Biotechnology, 52(14), 420-429, 2014.
Vijayaraghavan R.; Singh, M.; Rao, P.V.; Bhattacharya, R.; Kumar, P.; Sugendran, K.; Kumar, O.; Pant, S.C.; Singh, R. Subacute (90 days) oral toxicity studies of kombucha tea. Biomedical and Environmental Sciences, 13(4), 293-299, 2000.
Vitas, J.S.; Cvetanović, A.D.; Mašković, P.Z.; Švarc-Gajić, J.V.; Malbaša, R.V. Chemical composition and biological activity of novel types of kombucha beverages with yarrow. Journal of Functional Foods, 44, 95–102, 2018.
Zhao, Z.J.; Sui, Y.C.; Wu, H.W.; Zhou, C.B.; Hu, X.C.; Zhang, J. Flavour chemical dynamics during fermentation of kombucha tea. Emirates Journal of Food and Agriculture. 30, 732-741, 2018.
Zubaidah, E.; Dewantari, F.J.; Novitasari, F.R.; Srianta, I.; Blanc, P.J. Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198–203, 2017.