El panorama de las estrategias nanotecnológicas contra el COVID-19: productos y diagnósticos, vacunas y tratamientos

Contenido principal del artículo

Thyago Jo´sé Arruda Pacheco
Franciéle de Matos da Silva
Danielle Galdino de Souza
Victor Carlos Mello da Silva
Raquel Santos Faria

Resumen

El estado de pandemia, declarado por la Organización Mundial de la Salud, el 11 de marzo de 2020, ha puesto a prueba la capacidad de adaptación y respuesta de la sociedad. Una carrera contra el tiempo para buscar estrategias para combatir la enfermedad del nuevo coronavirus contribuye a la unión de los científicos de todo el mundo, incluyendo el uso de la nanotecnología. Por lo tanto, el objetivo del estudio fue describir el panorama de las estrategias de la nanotecnología contra COVID-19, destacando principalmente los productos y diagnósticos, vacunas y tratamientos que son o pueden ser utilizados. Se realizó una revisión bibliográfica de los estudios publicados entre febrero y noviembre de 2020 en las bases de datos PubMed, Scielo y Google Scholar. Según los índices de las distintas bases de datos, se utilizaron los términos de búsqueda "new coronavirus 2019", "COVID-19", "severe acute respiratory syndrome" Nanotechnology against COVID-19", "COVID-19 Vaccines" sin ninguna restricción de idioma. El uso de materiales de base nanométrica ha indicado un gran potencial contra la diseminación del COVID-19, con la producción de productos, diagnósticos, vacunas y tratamientos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Arruda Pacheco, T. J., de Matos da Silva, F., Galdino de Souza, D. ., Mello da Silva, V. C., & Santos Faria, R. (2021). El panorama de las estrategias nanotecnológicas contra el COVID-19: productos y diagnósticos, vacunas y tratamientos. Revista De Ciencia Y Tecnología, 35(1), 73–78. Recuperado a partir de https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/682
Sección
Salud

Citas

Ahmed M K, Afifi M, Uskokovic V. Protecting healthcare workers during COVID-19 pandemic with nanotechnology: A protocol for a new device from Egypt. Journal of Infection and Public Health. 2020, 13(9):1243–1246.

Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020, 52:583–589.

Balagna C, Perero S, Percivalle E, Nepita EV, Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/ silica composite sputtered coating. Open Ceramics. 2020, 1(2666–5395):3.

Campos E V R et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. Journal of Nanobiotechnology. 2020, 18(1):1–23.

Chan, W. C. W. Nano Research for COVID-19. ACS Nano, v. 14, p. 3719–3720, 2020.

Chauhan G. et al. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano. 2020, 14(7):7760–7782.

Chhikara B S. Current trends in nanomedicine and nanobiotechnology research. Journal of Materials NanoScience. 2017, 4(1):19-24.

Choi Y H, Han H K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of Pharmaceutical Investigation. 2018, 48(1): 43–60.

DRAFT landscape of COVID-19 candidate vaccines. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidatevaccines. Accessed: 2020 oct. 19.

Faraj Z. O. A. Covid-19 Pandemic: Lessons to Learn from China. Oman Medical Journal. 2020, 35(4):1–2.

Fluhmann B. et al. Nanomedicines: The magic bullets reaching their target? European Journal of Pharmaceutical Sciences. 2019, 128:73–80.

Ghaffari H. et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. Journal of Biomedical Science. 2019, 26(1):1–10.

Huang X. et al. Novel Gold Nanorod-Based HR1 Peptide Inhibitor for Middle East Respiratory Syndrome Coronavirus. ACS Applied Materials and Interfaces. 2019, 11(22): 19799–19807.

Itani R, Tobaiqy M, Faraj A Al. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020, 10(13):5932–5942.

Jackman, J. A.; Lee, J.; Cho, N. J. Nanomedicine for Infectious Disease Applications: Innovation towards Broad-Spectrum Treatment of Viral Infections. Nano. Micro Small. 2016, 12(9):1133–1139.

Jackson L. A. et al. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine, 2020.

Keech, Cheryl et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine, 2020.

Kong B. et al. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome. Nature Communications. 2019, 10(1).

Kostarelos, K. Nanoscale nights of COVID-19. Nature Nanotechnology. 2020, 15:343–344.

Lammers T. et al. Dexamethasone nanomedicines for COVID-19. Nature Nanotechnology. 2020, 15(8):618–621.

Li Z. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of Medical Virology. 2020, 92(9):1518–1524.

Lin Z. et al. Inhibition of H1N1 influenza virus by selenium nanoparticles loaded with zanamivir through p38 and JNK signaling pathways. RSC Advances. 2017, 7(56):35290–35296.

Meel, R. Van Deer et al. Smart cancer nanomedicine: Strategic directions to improve translation and exploitation. HHS Public Access. 2019, 14(11):1007–1017.

Mulligan M J. et al. Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020.

Oliveira, M. B. S. C. D., & Ribeiro, F. C. Virologia. EPSJV. 2009.

Osminkina L. A. et al. Porous silicon nanoparticles as scavengers of hazardous viruses. Journal of Nanoparticle Research. 2014, 16(6).

Pacheco TJA, Silva FM, Souza DG, Silva VCM, Faria, RS. Coronavirus disease 2019 (COVID-19): updated evidence of comparative overview, diagnosis and treatments. Revista Cereus. 2020, 12:228-243.

Palmieri V, Papi M. Can graphene take part in the fight against COVID-19? Nano Today. 2020, 33(1748– 0132):1–4.

Patel S. et al. Nanoparticles as a Platform for Antimicrobial Drug Delivery. Advances in Pharmacology and Pharmacy. 2017, 5(3):31–43.

Seo G. et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS nano. 2020, 14(4):5135–5142.

Silva J M S. et al. Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles. ACS Applied Materials and Interfaces, 2016, 8(26):16564–16572.

Sportelli MC et al. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials. 2020, 10(802).

Tabish T A, Hamblin M R. Multivalent nanomedicines to treat COVID-19: A slow train coming. Nano Today. 2020, 35(1748– 0132):4.

Talebian S, Wallace GG, Schroeder, Francesco S, João C. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology. 2020, 15(8):618–621.

Vazquez-Munoz R, Lopez-Ribot J L. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges. 2020, 11(2):15.

Vicente S. et al. From single-dose vaccine delivery systems to nanovaccines. Journal of Drug Delivery Science and Technology. 2010, 20(4):267–276.

Weiss C. et al. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano. 2020, 14(6):6383–6406.

Yadav H K S. et al. Nanovaccines formulation and applications-a review. Journal of Drug Delivery Science and Technology. 2018, 44:380–387.

Yang, X. Xi; Mei, C.; Huang, C. Z. Curcumin modified silver nanoparticles for higly efficient inhibition of respiratory syncytial virus infiction. Nanoscale. 2016, 8(3040):1–9.

Zaman, M.; Good, M. F.; Toth, I. Nanovaccines and their mode of action. Methods. 2013, 60(3): 226–231.

Zhao L. et al. Nanoparticle vaccines. Vaccine. 2014, 32:327–337.

Zhong H. et al. Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances. ACS Nano. 2020, 14(5):6213–6221.