Niveles de actividad física y su asociación con factores de riesgo cardiometabólico en empleados hospitalarios

Contenido principal del artículo

Gabriela C. Gauvry
María S. Castillo Rascón
Williams R. Pedrozo
Carlos Castro Olivera
Alicia C. Guzmán
Ramón A. Sánchez
Elba C. Malarczuk
Graciela A. Bonneau

Resumen

El objetivo del presente trabajo consiste en conocer los hábitos activos totales en empleados públicos hospitalarios y su relación con el Índice de Masa Corporal (IMC), Perímetro de Cintura (CC) y Factores de Riesgo Aterogénico Modificables. Sobre un total de 989 trabajadores, fueron evaluados 432 individuos. Se realizaron encuestas personales, mediciones antropométricas, de presión arterial y extracción sanguínea. El nivel de actividad física se midió utilizando el cuestionario internacional de actividad física (IPAQ). El 57,2% presentó bajo nivel, 22,9% nivel moderado y 19,9% nivel intenso. El bajo nivel fue mayor en mujeres (60,3%) que en varones (48,2%) (p: 0,067) y en trabajadores con nivel de instrucción más bajo (65%) con respecto al nivel medio (58,8%) y alto (48,1%) (p: 0,016). No se encontró asociación significativa con IMC, CC y Factores de Riesgo Aterogenico Modificables. Se recomienda implementar una pista de salud a fin de propiciar la actividad física en el ámbito de trabajo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Gauvry, G. C., Castillo Rascón, M. S., Pedrozo, W. R., Castro Olivera, C., Guzmán, A. C., Sánchez, R. A., Malarczuk, E. C., & Bonneau, G. A. (2017). Niveles de actividad física y su asociación con factores de riesgo cardiometabólico en empleados hospitalarios. Revista De Ciencia Y Tecnología, 27(1), 69–74. Recuperado a partir de https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/331
Sección
Salud

Citas

Citri, A and Malenka, RC. Synaptic plasticity: multiple forms, functions, and mechanisms. 33 (1): p. 18-41. 2008

Hardingham, GE and Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. 11 (10): p. 682-696. 2010

Mony, L, Kew, JN, Gunthorpe, MJ and Paoletti, P. Allosteric modulators of NR2B‐containing NMDA receptors: molecular mechanisms and therapeutic potential. 157 (8): p. 1301-1317. 2009

Traynelis, SF, Wollmuth, LP, McBain, CJ, Menniti, FS, Vance, KM, Ogden, KK, Hansen, KB, Yuan, H, Myers, SJ and Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. 62 (3): p. 405-496. 2010

Madden, DR. The structure and function of glutamate receptor ion channels. 3 (2): p. 91-101. 2002

Akazawa, C, Shigemoto, R, Bessho, Y, Nakanishi, S and Mizuno, N. Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. 347 (1): p. 150-160. 1994

Monyer, H, Burnashev, N, Laurie, DJ, Sakmann, B and Seeburg, PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. 12 (3): p. 529-540. 1994

Sobolevsky, AI, Rosconi, MP and Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. 462 (7274): p. 745-756. 2009

Ataman, ZA, Gakhar, L, Sorensen, BR, Hell, JW and Shea, MA. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. 15 (12): p. 1603-1617. 2007

Aarts, MM and Tymianski, M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. 4 (2): p. 137-147. 2004

Green, AR. Why do neuroprotective drugs that are so promising in animals fail in the clinic? An industry perspective. 29 (11): p. 1030-1034. 2002

Parsons, CG, Danysz, W and Lodge, D. Introduction to glutamate receptors, their function and pharmacology. p. 1-30. 2002

Lo, EH, Dalkara, T and Moskowitz, MA. Mechanisms, challenges and opportunities in stroke. 4 (5): p. 399-414. 2003

Hoyte, L, Barber, P, Buchan, A and Hill, M. The rise and fall of NMDA antagonists for ischemic stroke. 4 (2): p. 131-136. 2004

Small, DL and Tauskela, JS. Glutamate receptor pharmacology: Lessons learned from the last decade of stroke trials. p. 27-45. 2005

Wang, CX and Shuaib, A. NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. 4 (2): p. 143-151. 2005

Muir, KW. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. 6 (1): p. 53-60. 2006

Sacco, RL, DeRosa, JT, Haley Jr, EC, Levin, B, Ordronneau, P, Phillips, SJ, Rundek, T, Snipes, RG, Thompson, JL and Investigators, GA. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. 285 (13): p. 1719-1728. 2001

Yurkewicz, L, Weaver, J, Bullock, MR and Marshall, LF. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. 22 (12): p. 1428-1443. 2005

Kotermanski, SE and Johnson, JW. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine. 29 (9): p. 2774-2779. 2009

Tu, W, Xu, X, Peng, L, Zhong, X, Zhang, W, Soundarapandian, MM, Belal, C, Wang, M, Jia, N and Zhang, W. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. 140 (2): p. 222-234. 2010

Guo, W, Zou, S, Guan, Y, Ikeda, T, Tal, M, Dubner, R and Ren, K. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. 22 (14): p. 6208-6217. 2002

Sinai, L, Duffy, S and Roder, JC. Src inhibition reduces NR2B surface expression and synaptic plasticity in the amygdala. 17 (8): p. 364-371. 2010

Liu, X-Y, Chu, X-P, Mao, L-M, Wang, M, Lan, H-X, Li, M-H, Zhang, G-C, Parelkar, NK, Fibuch, EE and Haines, M. Modulation of D2R-NR2B interactions in response to cocaine. 52 (5): p. 897-909. 2006

Hall, R and Soderling, T. Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. 78 (2): p. 361-371. 1997

Liu, S-b and Zhao, M-g. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors. 93 p. 27-31. 2013

Sun, Y, Zhang, L, Chen, Y, Zhan, L and Gao, Z. Therapeutic Targets for Cerebral Ischemia Based on the Signaling Pathways of the GluN2B C Terminus. 46 (8): p. 2347-2353. 2015

Jensen, LJ, Kuhn, M, Stark, M, Chaffron, S, Creevey, C, Muller, J, Doerks, T, Julien, P, Roth, A and Simonovic, M. STRING 8—a global view on proteins and their functional interactions in 630 organisms. 37 (suppl 1): p. D412-D416. 2009

Goujon, M, McWilliam, H, Li, W, Valentin, F, Squizzato, S, Paern, J and Lopez, R. A new bioinformatics analysis tools framework at EMBL–EBI. 38 (suppl 2): p. W695-W699. 2010

Berman, HM, Bhat, TN, Bourne, PE, Feng, Z, Gilliland, G, Weissig, H and Westbrook, J. The Protein Data Bank and the challenge of structural genomics. 7 p. 957-959. 2000

Zhang, Y. I-TASSER server for protein 3D structure prediction. 9 (1): p. 40. 2008

Laskowski, RA, Hutchinson, EG, Michie, AD, Wallace, AC, Jones, ML and Thornton, JM. PDBsum: a Web-based database of summaries and analyses of all PDB structures. 22 (12): p. 488-490. 1997

Tereshko, V, Teplova, M, Brunzelle, J, Watterson, DM and Egli, M. Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. 8 (10): p. 899-907. 2001

Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC and Ferrin, TE. UCSF Chimera—a visualization system for exploratory research and analysis. 25 (13): p. 1605-1612. 2004

Trott, O and Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. 31 (2): p. 455-461. 2010

London, N, Raveh, B, Cohen, E, Fathi, G and Schueler-Furman, O. Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions. 39 (suppl 2): p. W249-W253. 2011

Raveh, B, London, N and Schueler‐Furman, O. Sub‐angstrom modeling of complexes between flexible peptides and globular proteins. 78 (9): p. 2029-2040. 2010

Husi, H, Ward, MA, Choudhary, JS, Blackstock, WP and Grant, SG. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. 3 (7): p. 661-669. 2000

Choi, UB, Xiao, S, Wollmuth, LP and Bowen, ME. Effect of Src kinase phosphorylation on disordered C-terminal domain of N-methyl-D-aspartic acid (NMDA) receptor subunit GluN2B protein. 286 (34): p. 29904-29912. 2011

Hennequin, LF, Allen, J, Breed, J, Curwen, J, Fennell, M, Green, TP, Lambert-van der Brempt, C, Morgentin, R, Norman, RA and Olivier, A. N-(5-chloro-1, 3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl) ethoxy]-5-(tetrahydro-2 h-pyran-4-yloxy) quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. 49 (22): p. 6465-6488. 2006

Morris, AL, MacArthur, MW, Hutchinson, EG and Thornton, JM. Stereochemical quality of protein structure coordinates. 12 (4): p. 345-364. 1992

Kyte, J and Doolittle, RF. A simple method for displaying the hydropathic character of a protein. 157 (1): p. 105-132. 1982

Lin, Y-Z, Yao, S, Veach, RA, Torgerson, TR and Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. 270 (24): p. 14255-14258. 1995

Embury, J, Klein, D, Pileggi, A, Ribeiro, M, Jayaraman, S, Molano, RD, Fraker, C, Kenyon, N, Ricordi, C and Inverardi, L. Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. 50 (8): p. 1706-1713. 2001

Johnson, JL, Lowell, BC, Ryabinina, OP, Lloyd, RS and McCullough, AK. TAT-mediated delivery of a DNA repair enzyme to skin cells rapidly initiates repair of UV-induced DNA damage. 131 (3): p. 753-761. 2011

Contador de visualizaciones: Resumen : 53 vistas.