Diseño de péptidos inhibidores de interacciones de la subunidad GluN2B del receptor NMDA en isquemia

Contenido principal del artículo

Edwin Alfredo Reyes Guzmán
Nohora Angélica Vega Castro
Edgar Antonio Reyes Montano

Resumen

El receptor NMDA constituye el principal subtipo de receptores de glutamato implicados en procesos fisiológicos tales como desarrollo neuronal, plasticidad sináptica, memoria y aprendizaje y numerosas condiciones patológicas como daño isquémico, dolor crónico, psicosis, y otros trastornos degenerativos. Se ha sugerido la regulación por fosforilación como un mecanismo de alteración de la permeabilidad relativa del NMDAR a Ca2+ durante la isquemia. En este trabajo se diseñó una serie de péptidos basados en interacciones de la subunidad GluN2B con las proteínas DAPK1, SRC y D2R, relacionadas con los efectos generados tras un evento isquémico. La identificación de sitios de unión entre estas moléculas y GluN2B permitió hacer un diseño in silico de péptidos que eventualmente pueden bloquear dichas interacciones y reducir los efectos nocivos de patologías como la isquemia. Nuestros resultados demuestran que el diseño racional de péptidos es una buena estrategia para la generación de nuevos agentes terapéuticos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Reyes Guzmán, E. A., Vega Castro, N. A., & Reyes Montano, E. A. (2017). Diseño de péptidos inhibidores de interacciones de la subunidad GluN2B del receptor NMDA en isquemia. Revista De Ciencia Y Tecnología, 27(1), 11–22. Recuperado a partir de https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/323
Sección
Biología y Genética

Citas

Citri, A and Malenka, RC. Synaptic plasticity: multiple forms, functions, and mechanisms. 33 (1): p. 18-41. 2008

Hardingham, GE and Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. 11 (10): p. 682-696. 2010

Mony, L, Kew, JN, Gunthorpe, MJ and Paoletti, P. Allosteric modulators of NR2B‐containing NMDA receptors: molecular mechanisms and therapeutic potential. 157 (8): p. 1301-1317. 2009

Traynelis, SF, Wollmuth, LP, McBain, CJ, Menniti, FS, Vance, KM, Ogden, KK, Hansen, KB, Yuan, H, Myers, SJ and Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. 62 (3): p. 405-496. 2010

Madden, DR. The structure and function of glutamate receptor ion channels. 3 (2): p. 91-101. 2002

Akazawa, C, Shigemoto, R, Bessho, Y, Nakanishi, S and Mizuno, N. Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. 347 (1): p. 150-160. 1994

Monyer, H, Burnashev, N, Laurie, DJ, Sakmann, B and Seeburg, PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. 12 (3): p. 529-540. 1994

Sobolevsky, AI, Rosconi, MP and Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. 462 (7274): p. 745-756. 2009

Ataman, ZA, Gakhar, L, Sorensen, BR, Hell, JW and Shea, MA. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. 15 (12): p. 1603-1617. 2007

Aarts, MM and Tymianski, M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. 4 (2): p. 137-147. 2004

Green, AR. Why do neuroprotective drugs that are so promising in animals fail in the clinic? An industry perspective. 29 (11): p. 1030-1034. 2002

Parsons, CG, Danysz, W and Lodge, D. Introduction to glutamate receptors, their function and pharmacology. p. 1-30. 2002

Lo, EH, Dalkara, T and Moskowitz, MA. Mechanisms, challenges and opportunities in stroke. 4 (5): p. 399-414. 2003

Hoyte, L, Barber, P, Buchan, A and Hill, M. The rise and fall of NMDA antagonists for ischemic stroke. 4 (2): p. 131-136. 2004

Small, DL and Tauskela, JS. Glutamate receptor pharmacology: Lessons learned from the last decade of stroke trials. p. 27-45. 2005

Wang, CX and Shuaib, A. NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. 4 (2): p. 143-151. 2005

Muir, KW. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. 6 (1): p. 53-60. 2006

Sacco, RL, DeRosa, JT, Haley Jr, EC, Levin, B, Ordronneau, P, Phillips, SJ, Rundek, T, Snipes, RG, Thompson, JL and Investigators, GA. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. 285 (13): p. 1719-1728. 2001

Yurkewicz, L, Weaver, J, Bullock, MR and Marshall, LF. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. 22 (12): p. 1428-1443. 2005

Kotermanski, SE and Johnson, JW. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine. 29 (9): p. 2774-2779. 2009

Tu, W, Xu, X, Peng, L, Zhong, X, Zhang, W, Soundarapandian, MM, Belal, C, Wang, M, Jia, N and Zhang, W. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. 140 (2): p. 222-234. 2010

Guo, W, Zou, S, Guan, Y, Ikeda, T, Tal, M, Dubner, R and Ren, K. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. 22 (14): p. 6208-6217. 2002

Sinai, L, Duffy, S and Roder, JC. Src inhibition reduces NR2B surface expression and synaptic plasticity in the amygdala. 17 (8): p. 364-371. 2010

Liu, X-Y, Chu, X-P, Mao, L-M, Wang, M, Lan, H-X, Li, M-H, Zhang, G-C, Parelkar, NK, Fibuch, EE and Haines, M. Modulation of D2R-NR2B interactions in response to cocaine. 52 (5): p. 897-909. 2006

Hall, R and Soderling, T. Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. 78 (2): p. 361-371. 1997

Liu, S-b and Zhao, M-g. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors. 93 p. 27-31. 2013

Sun, Y, Zhang, L, Chen, Y, Zhan, L and Gao, Z. Therapeutic Targets for Cerebral Ischemia Based on the Signaling Pathways of the GluN2B C Terminus. 46 (8): p. 2347-2353. 2015

Jensen, LJ, Kuhn, M, Stark, M, Chaffron, S, Creevey, C, Muller, J, Doerks, T, Julien, P, Roth, A and Simonovic, M. STRING 8—a global view on proteins and their functional interactions in 630 organisms. 37 (suppl 1): p. D412-D416. 2009

Goujon, M, McWilliam, H, Li, W, Valentin, F, Squizzato, S, Paern, J and Lopez, R. A new bioinformatics analysis tools framework at EMBL–EBI. 38 (suppl 2): p. W695-W699. 2010

Berman, HM, Bhat, TN, Bourne, PE, Feng, Z, Gilliland, G, Weissig, H and Westbrook, J. The Protein Data Bank and the challenge of structural genomics. 7 p. 957-959. 2000

Zhang, Y. I-TASSER server for protein 3D structure prediction. 9 (1): p. 40. 2008

Laskowski, RA, Hutchinson, EG, Michie, AD, Wallace, AC, Jones, ML and Thornton, JM. PDBsum: a Web-based database of summaries and analyses of all PDB structures. 22 (12): p. 488-490. 1997

Tereshko, V, Teplova, M, Brunzelle, J, Watterson, DM and Egli, M. Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. 8 (10): p. 899-907. 2001

Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC and Ferrin, TE. UCSF Chimera—a visualization system for exploratory research and analysis. 25 (13): p. 1605-1612. 2004

Trott, O and Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. 31 (2): p. 455-461. 2010

London, N, Raveh, B, Cohen, E, Fathi, G and Schueler-Furman, O. Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions. 39 (suppl 2): p. W249-W253. 2011

Raveh, B, London, N and Schueler‐Furman, O. Sub‐angstrom modeling of complexes between flexible peptides and globular proteins. 78 (9): p. 2029-2040. 2010

Husi, H, Ward, MA, Choudhary, JS, Blackstock, WP and Grant, SG. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. 3 (7): p. 661-669. 2000

Choi, UB, Xiao, S, Wollmuth, LP and Bowen, ME. Effect of Src kinase phosphorylation on disordered C-terminal domain of N-methyl-D-aspartic acid (NMDA) receptor subunit GluN2B protein. 286 (34): p. 29904-29912. 2011

Hennequin, LF, Allen, J, Breed, J, Curwen, J, Fennell, M, Green, TP, Lambert-van der Brempt, C, Morgentin, R, Norman, RA and Olivier, A. N-(5-chloro-1, 3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl) ethoxy]-5-(tetrahydro-2 h-pyran-4-yloxy) quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. 49 (22): p. 6465-6488. 2006

Morris, AL, MacArthur, MW, Hutchinson, EG and Thornton, JM. Stereochemical quality of protein structure coordinates. 12 (4): p. 345-364. 1992

Kyte, J and Doolittle, RF. A simple method for displaying the hydropathic character of a protein. 157 (1): p. 105-132. 1982

Lin, Y-Z, Yao, S, Veach, RA, Torgerson, TR and Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. 270 (24): p. 14255-14258. 1995

Embury, J, Klein, D, Pileggi, A, Ribeiro, M, Jayaraman, S, Molano, RD, Fraker, C, Kenyon, N, Ricordi, C and Inverardi, L. Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. 50 (8): p. 1706-1713. 2001

Johnson, JL, Lowell, BC, Ryabinina, OP, Lloyd, RS and McCullough, AK. TAT-mediated delivery of a DNA repair enzyme to skin cells rapidly initiates repair of UV-induced DNA damage. 131 (3): p. 753-761. 2011

Contador de visualizaciones: Resumen : 54 vistas.