Capacidades antagónicas de cepas Trichoderma y su multiplicación en masa usando desechos agrícolas

Contenido principal del artículo

Marcela A. Sadañoski
Jimena Gutierrez-Brower
María L. Castrillo
Ana C. López
Paola A. Ojeda
Pedro D. Zapata
Laura L. Villalba
Mónica B. Otegui

Resumen

El objetivo de esta investigación fue aislar y caracterizar cepas de Trichoderma nativas de Misiones (Argentina) explorando sus capacidades antagónicas y su multiplicación masiva utilizando diferentes residuos agroindustriales. Quince cepas nativas de Trichoderma spp. fueron aisladas de muestras de suelo. Estos aislamientos se caracterizaron mediante observaciones morfológicas y moleculares basados en secuencias de ADN de la región espaciadora transcrita interna del ADNr. Las cepas de Trichoderma spp. fueron identificadas como T. koningiopsis, T. harzianum, T. pleuroticola y T. brevicompactum. Estas cepas mostraron actividades antagónicas in vitro contra Alternaria sp., Fusarium sp. y Botrytis sp.. T. koningiopsis LBM 090, LBM 091, LBM 092 y LBM 098, T. pleuroticola LBM 097 y T. harzianum LBM 096 presentaron una inhibición del crecimiento micelial mayor del 50% y un índice de antagonismo entre 3 y 4 contra los fitopatógenos ensayados. La cáscara de arroz y el pulido del arroz fueron las combinaciones más adecuadas para la multiplicación de T. harzianum LBM 096.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Sadañoski, M. A., Gutierrez-Brower, J., Castrillo, M. L., López, A. C., Ojeda, P. A., Zapata, P. D., Villalba, L. L., & Otegui, M. B. (2018). Capacidades antagónicas de cepas Trichoderma y su multiplicación en masa usando desechos agrícolas. Revista De Ciencia Y Tecnología, 30(1), 4–11. Recuperado a partir de https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/224
Sección
Ingeniería, Tecnología e Informática

Citas

Gveroska, B; Ziberoski, J. Trichoderma harzianum as a biocontrol agent against Alternaria alternata on tobacco. Appl Innov Technol. 7: p. 67-76. 2012.

de Lima, FB; Félix, C; Osório, N; Alves, A; Vitorino, R Domingues P, da Silva Ribeiro, RT; Esteves, AC. Trichoderma harzianum T1A constitutively secretes proteins involved in the biological control of Guignardia citricarpa. Biol Control. 106: p. 99-109. 2017.

Pandya, JR; Sabalpara, AN; Chawda, SK. Trichoderma: a particular weapon for biological control of phytopathogens. J. Agricult Technol. 7: p. 1187-1191. 2011.

Harman, GE. Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology. 96: p. 190-194. 2006.

Martínez-Medina, A; Alguacil, MDM; Pascual, JA; Van Wees, SC. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol. 40: p. 804-815. 2014.

Galarza, L; Akagi, Y; Takao, K; Kim, CS; Maekawa, N; Itai, A; Peralta, E; Santos, E; Goh, CH; Vallejos, DFV; Nicotra, AB; Mathesius, U. The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J of Chem Ecol. 39: p. 826–839. 2013.

Samuels, GJ. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96: p. 195-206. 2006.

Kullnig-Gradinger, CM; Szakacs, G; Kubicek, CP. Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res. 106: p. 757–767. 2002.

Pérez, ML; Collavino, MM; Sansberro, PA; Mroginski, LA; Galdeano, E. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions. World J Microbiol Biotechnol. 32: p. 1-15. 2016.

Peres, NAR; Agostini, JP; Timmer, LW. Outbreaks of Alternaria brown spot of citrus in Brazil and Argentina. Plant Dis. 87: p. 750-750. 2003.

Lopez, AAS; Rennis, L; Cabrera, MG; Castillo, AE. Determinación de hongos patógenos en cultivos ornamentales y su control con soluciones de propóleos. Agrotecnia. (22): p. 13-17. 2016.

Baker, RR; Dunn, PE. New directions in biological control. Alternatives for suppressing agricultural pests and diseases. Wiley-Liss Inc. 1990.

Monte, E. Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol. 4(1): p. 1-4. 2001.

Harman, GE; Howell, CR; Viterbo, A; Chet, I; Lorito, M. Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2: p. 43-56. 2004.

Lorito, M; Woo, SL; Harman, GE; Monte, E. Translational research on Trichoderma: from 'omics to the field. Annu Rev Phytopathol. 48: p. 395-417. 2010.

Rin,i CR; Sulochana, KK. Substrate evaluation for multiplication of Trichoderma spp. J Trop Agri. 45: p. 58-60. 2007.

Ahmed, S; Mustafa, G; Arshad, M; Rajoka, MI. Fungal biomass protein production from Trichoderma harzianum using rice polishing. Biomed Res Int. 2017.

Doyle, JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull. 19: p. 11-15. 1987.

Druzhinina, IS; Kopchinskiy, AG; Komoń, M; Bissett, J; Szakacs, G; Kubicek, CP. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol. 42: p. 813-828. 2005.

White, TJ; Bruns, T; Lee, SJWT; Taylor, JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. 18: p. 315-322. 1990.

Goloboff, PA. Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics. 15: p. 415-428. 1999.

Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. p. 783-791.1985.

Desai, S; Reddy, MS; Kloepper, JW. Comprehensive testing of biocontrol agents. Biol Control Crop Dis. p. 387-420. 2002.

Bell, DK; Wells, HD; Markham, CR. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology. 72: p. 379-382.1982.

Calistru, C; McLean, M; Berjak, P. In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species. Mycopathologia. 137: p. 115-124. 1997.

Zachow, C; Berg, C; Müller, H; Meincke, R; Komon-Zelazowska, M; Druzhinina, IS; Kubicek, CP; Berg, G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J. 3: p. 79-92. 2009.

Hoyos-Carvajal, L; Orduz, S; Bissett, J. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol. 46: p. 615-631. 2009.

Adetutu, EM; Thorpe, K; Bourne, S; Cao, X; Shahsavari, E; Kirby, G; Ball, AS. Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia. 103: p. 959-968. 2011.

Pérez Valencia, LI; Santerre, A; Villallobos Arámbula, AR; Galván Corona, A; Torres-Torres, MG; Rodríguez Contreras, A; Guzmán Dávalos, L. Extracción de DNA y amplificación de secuencias del ITS del DNAr de Ganoderma (Fungi, Basidiomycetes) para su uso en el análisis filogenético. CUCBA. 8. 2005.

Castrillo, ML; Fonseca, MI; Bich, GA; Jerke, G; Horianski, MA; Zapata, PD. Taxonomy and phylogenetic analysis of Aspergillus section nigri isolated from yerba mate in Misiones (Argentina). BAG J Basic Appl Genet. 23: p. 19-27. 2012.

Weekers, PH; De Jonckheere, JF; Dumont, HJ. Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Mol Phylogenet Evol. 20: p. 89-99. 2001.

Oliverio, M; Cervelli, M; Mariottini, P. ITS2 rRNA evolution and its congruence with the phylogeny of muricid neogastropods (Caenogastropoda, Muricoidea). Mol Phylogenet Evol. 25: p. 63-69. 2002.

Kelly, LJ; Hollingsworth, PM; Coppins, BJ; Ellis, CJ; Harrold, P; Tosh, J; Yahr, R. DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist. 191(1): p. 288-300. 2011.

Schoch, CL; Seifert, KA; Huhndorf, S; Robert, V; Spouge, JL; Levesque, CA; Chen, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U.S.A. 109: p. 6241−6246. 2012.

Fontenelle, ADB; Guzzo, SD; Lucon, CMM; Harakava, R. Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot. 30: p. 1492-1500. 2011.

Raja, HA; Miller, AN; Pearce, CJ; Oberlies, NH. Fungal identification using molecular tools: a primer for the natural products research community. J. Nat Prod. 80(3): p. 756-770. 2017.

Larralde-Corona, CP; Santiago-Mena, MR; Sifuentes-Rincon, AM; Rodríguez-Luna, IC; Rodriguez-Perez, MA; Shirai, K; Narvaez-Zapata, JA. Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl Microbiol Biotechnol. 80: p. 167-177. 2008.

Fernández Barbosa, RJ; Suárez Meza, CL. Antagonismo in vitro de Trichoderma harzianum Rifai sobre Fusarium oxysporum Schlecht f. Sp passiflorae en maracuyá (Passiflora edulis Sims var. Flavicarpa) del municipio zona bananera colombiana. Revista Facultad Nacional de Agronomía, Medellín. 62: p. 4743-4748. 2009.

Cubillos Hinojosa, JG; Páez Redondo, A; Mejía Doria, L. Evaluación de la capacidad biocontroladora de Trichoderma harzianum Rifai contra Fusarium solani (Mart.) Sacc. asociado al complejo Secadera en Maracuyá, bajo condiciones de invernadero. Revista Facultad Nacional de Agronomía, Medellín. 64: p. 5821-5830. 2011.

Hohmann, P; Jones, EE; Hill, RA; Stewart, A. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol. 115: p. 759-767. 2011.

Saravana Kumar, K; Yu, C; Dou, K; Wang, M; Li, Y; Chen, J. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control. 94: p. 37-46. 2016.

Pugliese, M, Gullino, ML; Garibaldi, A. Efficacy of microorganisms selected from compost to control soil-borne pathogens. Commun Agric Appl Biol Sci. 75: p. 665-669. 2009.

Ramos, A; Yabid, E; Zapata Navarro, RI; Oviedo Zumaqué, LE; Violeth, B; Luis, J. Evaluation of substrates and fermentation solid process for spores production of Trichoderma sp. Revista Colombiana de Biotecnología. 10: p. 23-34. 2008.

Chaudhari, PJ; Shrivastava, P; Khadse, AC. Substrate evaluation for mass cultivation of Trichoderma viride. Asiat J Biotechnol Resour. 4: p. 441-446. 2011.

Kumar, TP; Palakshappa, MG. Evaluation of suitable substrates for on farm production of antagonist Trichoderma harzianum. Karnataka J Agric Sci. 22: p. 115-117. 2009.

Contador de visualizaciones: Resumen : 186 vistas.