Sensibilidad a carbapenemes y producción de carbapenemasas en especies de Pseudomonas de origen ambiental

Contenido principal del artículo

Adriana E. Quiroga Zingaretti
Eduardo R. Pegels
Valeria M. Almeida
Margarita E. Laczeski
Patricia N. Oviedo
Marina I. Quiroga

Resumen

Se investigó la sensibilidad a carbapenemes en 238 aislamientos de Pseudomonas spp. recuperados de muestras ambientales. En 198 (128 aislamientos con sensibilidad intermedia/resistencia a imipenem (IMP) y/o meropenem (MER) y 70 sensibles a ambos antimicrobianos) de los 238 aislamientos estudiados, se investigó fenotípica y genotípicamente la producción de carbapenemasas. El 8,8% de los aislamientos fue esistente a IMP y el 25,2% a MER. Nueve cepas recuperadas de agua mostraron fenotípicamente la producción de MBL. Todas fueron identificadas como P. otitidis. En ninguno de estos aislamientos se detectó la presencia de los genes blaIMP, blaSPM, blaVIM, blaKPC, ni blaNDM. La presencia de bacterias resistentes en el ambiente, exigiría acciones de control y saneamiento ambiental dado el impacto que podría representar para la salud pública.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Quiroga Zingaretti, A. E., Pegels, E. R., Almeida, V. M., Laczeski, M. E., Oviedo, P. N., & Quiroga, M. I. (2018). Sensibilidad a carbapenemes y producción de carbapenemasas en especies de Pseudomonas de origen ambiental. Revista De Ciencia Y Tecnología, 30(1), 62–68. Recuperado a partir de https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/221
Sección
Bioquímica y Farmacia

Citas

Zhang XX, Zhang T, Fang HHP. Antibiotic resistence genes in water environment. Appl Microbiol Biotechnol 2009; 82:397-414.

Nicolau CJ, Oliver A. Carbapenemasas en especies del género Pseudomonas. Enferm Infecc Microbiol Clin. 2010; 28(1):19-28.

Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. 2015. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother. 2015; 47(2):81-97.

Li D, Yang M, Hu JY, Zhang J, Liu RY, Gu X, Zhang Y, Wang ZY. Antibiotic resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol. 2009; 11:1506-1517.

Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009; 157:2893–2902.

Galloso PC, Lezcano MT, Quiroga M. Evaluación de métodos fenotípicos para la detección de Pseudomonas aeruginosa productoras de metalo-β-lactamasas. Rev Cienc Tecnol. 2010; 14:8-13.

Quiroga M, Cáceres MG, Stefañuk R, Villalba V, Rodriguez MM, Radice M, Gutkind G, Vergara M. Characterization of extended-spectrum ß-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Posadas, Misiones, Argentina. J. Chemother. 2008; 20(1):130-133.

Clinical Laboratory Standards Institute. Performance Standards for antimicrobial susceptibility testing; twenty-four informational supplement. CLSI document M100-S24, 2014, Vol. 34, Nº1, Wayne, Pennsylvania, USA.

Clinical Laboratory Standards Institute. Performance Standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. CLSI document M100-S25, 2015; Vol. 35, Nº3, Wayne, Pennsylvania, USA.

Pires J, Novais A, Peixe L. Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2013; 51:4281-4283.

Pasteran F, Veliz O, Ceriana P, Lucero C, Rapoport M, Albornoz E, Gomez S, Corso A. Evaluation of the Blue-Carba test for rapid detection of carbapenemases in gram negative bacili. J Clin Microbiol. 2015; 53:1996-1998.

Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol. 2012; 50:3773–3776.

Pasteran F, Tijet N, Melano R, Corso A (2015). Simplified protocol for Carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2015; 53(12):3908-3911.

Lucena A, Dalla Costa LM, Nogueira Kda S, Matos AP, Gales AC, Raboni SM. Comparison of phenotypic tests for the detection of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Enferm Infecc Microbiol Clin. 2014; 32(10):625-630.

Nicola FG, Nievas J, Smayevsky J. Evaluation of phenotypic methods for the detection of KPC carbapenemases in Klebsiella pneumoniae. Rev Argent Microbiol. 2012; 44(4):290-302.

Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother.2007; 59:321-322.

Akpaka PE, Swanston WH, Ihemere HN, Correa A, Torres JA, Tafur JD, Montealegre MC, Quinn JP, Villegas MV. Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clin Microbiol. 2009; 47(8):2670-2671.

Pasteran F, Albornoz E, Faccone D, Gomez S, Valenzuela C, Morales M, Estrada P, Valenzuela L, Matheu J, Guerriero L, Arbizú E, Calderón Y, Ramon-Pardo P, Corso A. Emergence of NDM-1-producing Klebsiella pneumoniae in Guatemala. J Antimicrob Chemother. 2012; 67:1795-1797.

Black JA, Smith Moland E, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol. 2005; 43: 3110-3113.

Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007; 5:175–186.

Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007; 271:147–161.

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010; 74:417–433.

Hu Y, Yang X, Li J, Lv N, Liu F, Wu J, Lin IY, Wu N, Weimer BC, Gao GF, Liu Y, Zhu B. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol. 2016; 82(22):6672-6681.

von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND1, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front Microbiol. 2016; 7:173.

Seyfried EE, Newton RJ, Rubert KF, Pedersen JA, Mc Mahon KD. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb Ecol. 2010; 59:799–807.

Quiroga M, Cáceres MG, Stefañuk R, Villalba V, Rodriguez MM, Radice M, Gutkind G, Vergara M. Characterization of extended-spectrum ß-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Posadas, Misiones, Argentina. J Chemother. 2008; 20(1):130-133.

Quiroga M, Villalba V, Lezcano MT, Gerula P, Valle M, Vergara M. Comparison of screening methods for detection of extended-spectrum ß-lactamases producing strains isolated from a public hospital in Posadas, Misiones, Argentina. Int J Antimicrob Agents. 2002; 20(4):313-314.

Martín Talavera B, Benassi F, von Spetch M, Quiroga M, García M, Pucciarelli A, Zubreski E, Laczeski M, Gutkind G. Susceptibilities to carbapenems and presence of cphA gene on food-borne Aeromonas. Braz Arch Biol Technol. 2006; 49(4):677-682.

Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G, Toplitsch D, Liebmann A, Grisold AJ, Farnleitner AH, Kirschner A, Zarfel G. Antibiotic resistance patterns of Pseudomonas spp. isolated from the river Danube. Front Microbiol. 2016; 7:586.

Zhang XX, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 2009; 82:397-414.

Igbinosa IH, Nwodo UU, Sosa A, Tom M, Okoh AI. Commensal Pseudomonas species isolated from wastewater and freshwater milieus in the Eastern Cape Province, South Africa, as reservoir of antibiotic resistant determinants. Int J Environ Res Public Health. 2012; 9(7):2537-2549.

Igbinosa IH, Okoh AI. Antibiotic susceptibility profile of Aeromonas species isolated from wastewater treatment plant. ScientificWorldJournal. 2012; 2012:764563.

Luczkiewicz A, Kotlarska E, Artichowicz W, Tarasewicz K, Fudala-Ksiazek S. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone. Environ Sci Pollut Res Int. 2015; 22(24):19823-19834.

Hong PY, Al-Jassim N, Ansari MI, Mackie RI, Environmental and public health implications of water reuse: antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes. Antibiotics (Basel). 2013; 2(3):367-399.

Chen C, Li J, Chen P, Ding R, Zhang P, Li X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ Pollut. 2014; 193:94-101.

Gatica J, Cytryn E. Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environ Sci Pollut Res Int. 2013; 20(6):3529-3538.

Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ Sci Technol. 2012; 46(9):4800-4808.

Singer AC, Shaw H, Rhodes V, Hart A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front Microbiol. 2016; 7:1728.

Hong PY, Yannarell AC, Dai Q, Ekizoglu M, Mackie RL. Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol. 2013; 79:2620–2629.

Borgianni L, De Luca F, Thaller MC, Chong Y, Rossolini GM, Docquier JD. Biochemical characterization of the POM-1 metallo-β-lactamase from Pseudomonas otitidis. Antimicrob Agents Chemother. 2015; 59(3):1755-1758.

Thaller MC, Borgianni L, Di Lallo G, Chong Y, Lee K, Dajcs J, Stroman D, Rossolini GM. Metallo-beta-lactamase production by Pseudomonas otitidis: a species-related trait. Antimicrob Agents Chemother. 2011; 55(1):118-123.

Clark LL, Dajc JJ, McLean CH, Bartell JG, Stroman DW. Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol. 2006; 56:709-714.

Lee K, Kim CK, Yong D, Yum JH, Chung MH, Chong Y, Thaller MC, Rossolini GM. POM-1 metallo-β-lactamase-producing Pseudomonas otitidis isolate from a patient with chronic otitis media. Diagn Microbiol Infect Dis. 2012; 72(3):295-296.

Picão RC, Carrara-Marroni FE, Gales AC, Venâncio DEX, Bronharo Tognim MC, Pelayo J. Metallo-β-lactamase-production in meropenem-susceptible Pseudomonas aeruginosa isolates: risk for silent spread. Mem Inst Oswaldo Cruz, 2012; 107(6):747-751.

Pappa O, Vantarakis A, Galanis A, Vantarakis G, Mavridou A. Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments. FEMS Microbiol Ecol. 2016; 92(6):fiw086.

Falahat S, Shojapour M, Sadeghi A. Detection of KPC carbapenemase in Pseudomonas aeruginosa isolated from clinical samples using Modified Hodge Test and boronic acid phenotypic methods and their comparison with the polymerase chain reaction. Jundishapur J Microbiol. 2016; 9(9): e27249.

Chalhoub H, Sáenz Y, Rodriguez-Villalobos H, Denis O, Kahl BC, Tulkens PM, Van Bambeke F. High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob Agents. 2016; 48(6):740-743.

Contador de visualizaciones: Resumen : 99 vistas.